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1. INTRODUCTION

Large time-bandwidth product waveforms are sometimes used in active

sonars to improve range resolution or target detection performance in the
presence of noise or reverberation. Waveforms with very large time-bandwidth
products may be attractive when one wishes to avoid detection. Such
waveforms cannot be effective unless the target's echoes are compressed to

pulses of short duration by a replica correlation receiver. Ideally, an exact
replica of the waveform should be used for this purpose, including

compensation for distortions attributed to the operating environment, such as
Doppler and frequency dependent absorption. However, in the presence of
random oscillatory motions of the sonar platform and target, or ocean

turbulence, it may be impossible to compensate the replica for all such

distortions. The echo will then fail to match the replica, reducing the
effectiveness of the pulse compression. Because of this fundamental limitation,
very large values of time-bandwidth product may not yield as much

performance as expected.

1.1 SCOPE

This report examines the effects of random, uncompensated distortions

that can be categorized undcr the general heading of "flutter", for certain

classes of large time-bandwidth waveforms, including linear FM sweeps, and
pseudo-random noise. Of primary interest is operation within the frequency
limits of 25-500 kHz, at ranges of 10-1000 m, covering the operational regime of

what might be categorized as high resolution sonars.

The effects of flutter can be considered as phase fluctuations. No attempt

is made to account for any associated amplitude fluctuations. The report does

not address beamforming, nor does it discuss the effects of noise, imperfections,

and approximations that are often made in practical sonar signal processing

systems.



1.2 TECHNICAL CONTEXT AND USAGE

Mathematical analysis forms the core of this report, and some sections

consist almost entirely of formulas and equations. Approximations are heavily

used . Many of them are supported by error bounds, but others are more reliant

upon heuristic reasoning and experiential inferences.

The terminologies of signal processing theory and linear systems

analysis are used throughout the report. For example, the rectangle function

I-(.), the triangle function A(.), and the function sinc(.) are heavily used.
(They are defined in Section 2.1.) It is assumed that the reader is familiar with

the Fourier transform techniques that are used in systems analysis and
communications theory, with power spectral densities of stationary random
process, with matched filtering theory, and with the manipulation of convolution

and correlation integrals.

In keeping with modern practice in acoustical analysis, complex signals

are used throughout; e.g., exp(j2irfot) is used instead of cos(27tfot). A brief
discussion of the impact of that usage in practical sonar terms is provided in

Section 2.8.

Mathematical developments will often be aided by a change of variables.

In this regard, the notation r --) X-t is to be read as ",T becomes X-rt, or
"substitute XL-t in place of T". It is important not to confuse this with the usage
that is sometimes encountered in computer programming context, where a <- b
means "replace the contents of register a by the contents of register b".

Many references to prior work are contained in the report. Direct

quotations of phrases and sentences are denoted by quotation marks, with

editorial insertions indicated by square brackets.
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1.3 GUIDE TO THE SECTIONS

Section 2 reviews time-bandwidth product theory and the method of

pulse compression filtering by means of replica correlation. Formulas for

computing bandwidth and pulse duration are given, and mathematical and

notational conventions are estabiished.

Section 3 defines flutter and gives several ways to characterize it.
Elementary properties of flutter are discussed, and particular attention is given

to spectral broadening of a pure tone due to flutter, Sources of flutter (other
than Lhe propagation medium itself) are described. Formulas are given for
flutter induced by sonar platform motion. Asymptotic behavior of the flutter

spectrum is discussed, for high and low frequencies.

Section 4 extracts pertinent information from published experimental
studies of a number of different investigators, with a view toward ascertaining

the nature of flutter induced by the propagation medium. Wherever possible,
data are taken from the published curves and used to determine flutter strengths
and spectra. A general flutter model is developed and compared with reported

data.

Section 5 contains an exhaustive theoretical analysis of the effect of
flutter upon replica correlation filtering when t*,e sonar waveform is a linear FM
wave burst. After a very tedious mathematical development containing many

approximations, it is dete, mined that the fluttered and compressed pLGse has

the form of an estimated spectrum of the phase deviation induced by the flutter,
using a simple linear transformation between the time and frequency axes.
Bq•sed upon this representation, formulas are derived for the duration of the

pulse, as elongated by the flut*-r. Subsequently, a formula for processing gain
(of the pulse compression filter) is derived. It is shown that increases in time-
bandwidth product, made by extending the duration of a fixed bandwidth
waveform, do not increase the processing gain without limit. A formula for

maximum processing gain is given. The maximum gain depends upon the

sonar "Q' and the strength of the flutter.

3



Section 6 is a theoretical analysis of the effect of flutter upon replica

correlation filtering when the sonar waveform is a frequency-hopped waveform

of a particular standard form. The mathematical developments are more difficult

and obscure than those of Section 5, with more approximations, and the results

are not as illuminating. Nevertheless, the basic nature of the fluttered and

compressed pulse is determined. Formulas for pulse duration and processing

gain are given. It is confirmed that the frequency-hopped waveform behaves

(approximately) like a linear FM wave burst when the frequency sequence is

ordered rather than random. When the sequence is random, the performance is

still analogous to the linear FM case except that the flutter is "time scrambled" by

the hopcode sequence, with the result that the flutter spectrum is effectively

whitened. As a result, flutter causes the energy of the fluttered and compressed

pulse to be bled away and redistributed as "self-noise" over a large time

interval, instead of merely being spread over a slightly larger interval, as is the

case for the linear FM wave burst.

Section 7 is a computer simulation study of the effects of flutter upon

pulse-compressior, Altering. The irequency-hopped waveform is used for this

purpose, since it includes the linear FM-wave burst as a special case (at least

as an approximation). Results are plotted in tandem for the linear FM and

random hopcode waveforms. Instead of a random flutter, a deterministic flutter

waveform is selected, whose spectral properties are in keeping with those

described in Section 4. The theoretical results of Sections 5 and 6 are

confirmed. In particular, the fluttered and compressed pulse duration formula of

Section 5 is found to be very reliable. The combined studies of Sections 5, 6,

and 7 lead to the conclusion that the linear FM waveform probably cannot be

improved upon, insofar as its flutter tolerance is concerned. In particular, the

random frequency-hopped waveform becomes progressively inferior as the

flutter strength is increased.

Section 8 contains a "short story" review of the entire report, and also

provides some simplified formulas. It also contains some suggested techniques

for measuring flutter experimentally, as well as final remarks and conclusions of

a general nature.

4



2. TIME-BANDWIDTH PRODUCTS AND REPLICA CORRELATION

The analysis relies heavily upon the the- y of signals and replica

correlation (i.e., matched filtering). The following tutorial review is provided to

lay the theoretical groundwork and to introduce notational conventions.

2.1 TIME-BANDWIDTH PRODUCT THEORY

Time-bandwidth product theory is widely discussed in the signal
processing and radar/sonar literature (Bracewell, 1978; Rihaczek, 1969; de
Coulon, 1986; Papoulis, 1977; McGillem and Cooper, 1974). The time-

bandwidth product "theorem", also known as the uncertainty principle, has been

stated succinctly by Bracewell (1978):

"It is well known that the bandwidth-duration product of a signal

cannot be less than a certain minimum value."

That minimum value depends upon the exact definitions of bandwidth
and duration, but is on the order of unity. This "theorem" is easy to demonstrate
in practice, but the theoretical underpinnings are somewhat obscure. Explicit
mathematical inequalities have been derived (several are given in the

references just cited), but they use clumsy definitions of bandwidth and duration

that are inappropriate for many waveforms of interest.

Regardless of the limitations of formal theory, the following approximate
inequality is an undisputed fact:

BT 5 1, (2.1)

where B represents the bandwidth (in hertz) and T is the duration (in seconds).

5



2.1.1 Definition of Bandwidth Be

Our definition of bandwidth is

IX(f 2 df

Be , (2.2)

JIX(df)14

where X(f) denotes the Fourier transform of the signal x(tý

X(f) = j x(t) e-j2 ,ft dt. (2.3)

The number Be computed by Eq. (2.2) has been variously called effective

bandwidth (Peebles, 1976; Burdic, 1984), efficient bandwidth (de Coulon,
1986), occupied bandwidth (Rihaczek, 1969) and information bandwidth

(Deutsch, 1969). As defined in Eq. (2.2), it is intended to be applied to complex-
valued signals whose spectral energy is distributed around some positive

frequency fo. It can also be applied to the complex baseband signal that is

obtained when such a signal is demodulated, in which case it represents a
"two-sided" bandwidth.

The value of Be is independent of time and frequency translations, and is

independent of the phase structure of the signal (since it is computed from the

energy spectrum JX(f)f 2). A reassuring feature of Be is that if a signal's energy

spectrum JX(fo 2 is flat over the range f, < f• f2 and zero elsewhere, then

Eq. (2.2) gives Be = f2 - fl.

6



2.1.2 Bandwidths of Generic Sonar Waveforms

If x(t)is a complex tone burst of duration T, namely,

I ~ H(t) = 1 fort _<-

x(t)= ej2,fIo , where H = o (2.4)
[1(t) = 0 for H> >j 2 /

then

X(f) = T sinc(Tf) 'where sinc(f) = sin(if) \ (2.5)
1ff

with the result that

Be = 1.5 (2.6)

T

This gives a time-bandwidth product (B.T) equal to 1.5.

Another very important waveform for sonar applications is the linear FM

wave burst of duration T, starting at instantaneous frequency f0 -Af and
2

ending at frequency fo + 1-Af, namely,
2

x(t) = HlA)eJ2 nfot expj2rtAft2)2 . (2.7)

It does not admit a simple formula for its exact bandwidth Be or time-bandwidth
product BT. However, numerical computations show that BeT is very close to

AfT when its value exceeds 3, but close to 1.5 when the product AfT has less

than unit value. Certainly as Af-- 0 the FM wave burst becomes a simple tone
burst, so that its time-bandwidth product BT must converge exactly to the

minimum value of 1.5. Figure 2.1 illustrates this behavior.

7
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FIGURE 2.1

TIME-BANDWIDTH PRODUCT OF A LINEAR FM WAVE BURST

2.1.3 Definition of Duration Te

In all of the examples discussed above the signals had constant

amplitude during an interval of length T, so their durations were unequivocally

equal to T. In general, however, a waveform could have negligible amplitude

over some portion of the interval, or it could continue forever, albeit with

decaying amplitude. A more general definition of duration is needed for such a

waveform. By analogy with the definition of Be one can define the duration T.:

[. l(t)t2 dt

T= (2.8)

J Ix(t)J4 dt

8



If a signal has constant magnitude over an interval of length T and is zero

outside it, this definition gives Te = T, as desired. On the other hand, if the

magnitude of the signal forms a triangular pulse whose base spans an interval

of length 2T, i.e.,

A(t) I - ItI forlIti I I
Ax(t(= ) , where - (2.9)

then straightforward integration gives T. = 10 T. Another important waveform is
9

the "sinc burst"

x(t) = Bsinc(Bt)eJ21fot, (2.10)

whose bandwidth is B=Be, since X(f)=H((f-fo)/B). By direct analogy with

Eqs. (2.5) and (2.6), its duration is

Te = 1.5/B. (2.11)

2.2 REPLICA CORRELATION (MATCHED FILTERING) THEORY

2.2.1 The Replica Xrep(t)

Let Xrep(t) denote the theoretical sonar echo from an ideal point target of
unit strength at some specified nominal range, including compensation for
known Doppler effects. The Doppler compensation might be based upon
micro-navigational data from inertial sensors, Kalman filters, and auxiliary

instruments (such as a high frequency Doppler velocimeter). Alternatively, if the
sonar receiver incorporates a bank of Doppler channels then Xrcp(t) is the ideal,
Doppler-compensated echo for one of those channels. In either case, Xrcp(t) is

called the replica.

For convenience, we assume that the time axis is centered at the time-of-
arrival of that ideal echo.

9



2.2.2 The Replica Correlation Filter (Matched Filter)

If x(t)denotes the acoustic signal that is actually received in a complex
target environment, then the replica correlating module of the sonar receiver
can be regarded as a matched filter whose impulse response hrcp(t) is specified

to be

hrep(t) = Xrep(-t), (2.12)

where * denotes the complex conjugate. The output of this matched filter is

j+00

z(t) = J hrep(t) x(t-4) dt (2.13)

= hrep(t) ® X(t) , (2.14)

where 0 denotes convolution. With substitution of Eq. (2.12) and the change of
variables ;-4 -X, Eq. (2.13) becomes

z(t) = J 4p(X) x(X+t) dX. (2.15)

Equation (2.15) makes the replica correlation self-evident, but the
mathematically equivalent form of Eq. (2.14) makes it more obvious that z(t) is
the output of a linear time-invariant filter.

2.2.3 The Pulse Compression Effect of the Filter

If the received signal x(t) consists entirely of an echo from an ideal target

of strength A, that has a range that exceeds the nominally specified range by a
small displacement ý, then the echo will be scaled by A and delayed, the delay
being equal to the increase in the round trip sound path divided by the speed of

sound c, i.e.,
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x(t) = A xr(t - 2c"'), (2.16)

(assuming that the target has the same Doppler for which Xrcp(t) was defined).

When this is substituted into Eq. (2.15), the following result is obtained:

z(t) = AJ Xrp(x) Xrep(t - 2c- + X)d. (2.17)

= Ap(t- 2c"'), (2.18)

where p(t)is the autocorrelation function of the replica,

p(t) = Xr*-t)® Xret) f •IO ,Xrep(?,) xr(k + t) dX. (2.19)

If one takes the Fourier transform of the left-hand equality of Eq. (2.19), the

result is

P(f) = Xrep(f) "Xrep(f) = Xrep(0 2 , (2.20)

which implies the well-known result that the replica's autocorrelation function is

the inverse transform of its energy spectral density:

p(t) = P. T. ý (Xrpf } (2.21)

If the received signal x(t) consists of echoes from an aggregation of

targets of strength (An) whose range displacements are (C,), i.e.,

x(t) = E Anxrcp(t - 2c-'n)' (2.22)

n



then by linear superposition Eq. (2.18) becomes

z(t) = I Anp(t - 2c-'n). (2.23)
n

The benefit of the replica correlation filtering lies in the fact the p(t) pulses

summed in Eq. (2.23) are always narrower and taller than the Xrcp(t) "pulses"

being summed in Eq. (2.22), so that the individual targets can be more easily

detected and isolated. This is true because the following rules apply for most

plausible signals.

(1) Although the time-bandwidth product of the sonar replica Xrep(t) is
very large (by design), the time-bandwidth product of p(t) is always on

the order of unity.

(2) The bandwidth of p(t)is comparable to that of Xrep(t).

As a consequence, the duration of p(t) must be shorter than that of Xrep(t0
by a factor that is approximately equal to the time-bandwidth product of Xrep(t)

However, the difficulty of proving (1) and (2) is dependent upon the definition of
"plausible". The proof becomes very easy if the sonar designer has ensured

that Xrep(t) belongs to the following class of signals.

2.3 CONSTANT AMPLITUDE, FLAT SPECTRUM (CAFS)
WAVEFORMS

If the amplitude Ix(t) of a complex waveform x(t) is approximately

constant over its duration T (which we assume to be centered at the origin, for
convenience), and its energy spectrum fX(Q( 2 is approximately constant over its
bandwidth B, then x(t)is said to be a constant amplitude, flat spectrum (CAFS)
waveform. In mathematical terms, a OAFS waveform obeys

jxt _K H(-t), (2.24)

and
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IX(f') K.; -H.[{ffcj (2.25)

where fc is the frequency around which the bandwidth is centered. The

amplitude scaling factor K is arbitrary, but the factor KfT/B in Eq. (2.25) is then

a consequence of Parseval's theorem, which demands that

(+00 (+00J x(t)A2 dt = J X(f~ df . (2.26)

2.3.1 Normalized CAFS Waveforms

The class of CAFS waveforms includes FM wave bursts, bandlimited

white noise bursts, and a variety of other waveforms that are of interest as sonar

transmissions. For purposes of analysis, and with little loss in generality, it will

be assumed in the remainder of this report that the sonar engineer has

designed his transmission so that xrep(t) is a CAFS waveform. Furthermore,

since the received waveform can be arbitrarily scaled for analysis purposes, it

will be assumed for convenience that K is selected to make the factor KV/T7B

in Eq. (2.25) equal to unity. Thus, for such a normalized CAFS waveform, the

conditions

IXrep(O Be (2.27)
Te T

and

j~repf~j nffc](2.28)

will apply.

For the sake of generality, the time-bandwidth parameters B and T have

been replaced by B. and T. in Eqs. (2.27) - (2.28). For a CAFS sonar
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transmission it is likely that the time boundaries will be sharply defined and the
amplitude quite constant, so that the defining formula of Eq. (2.8) will give Te = T
anyway. On the other hand, sonar transmissions never have perfectly sharp
frequency boundaries, so Eq. (2.25) is just an approximation that holds for some
reasonable calculation of bandwidth B, for which Be is an acceptable choice.

Even a tone burst can be loosely regarded as a CAFS waveform,
although it compromises the flat spectrum assumption a bit, since its spectrum

actually has the shape of a sinc function (see Eq. (2.5)).

Strictly speaking, no waveform can meet the normalizing conditions of
Eqs. (2.27) - (2.28) exactly. However, the larger the time-bandwidth product, the
easier it is for a waveform to be made to fit the CAFS assumptions. For
example, with a time-bandwidth product of 20 or more an FM wave burst has a
very flat, bandlimited spectra (Rihaczek, 1969).

2.3.2 The Nature of the Ideal Compressed Pulse p(t) and the Filter
Response Hrep(f)for a CAFS Waveform

Since by Eq. (2.21) the autocorrelation pulse p(t) is the inverse transform

of fX(fA2, it follows from Eq. (2.28) that

p(t) =_ Be sinc(Bet) ej2nft. (2.29)

The action of the replica correlation filter can be described in terms of its
system function, Hrep(f) which, by taking Fourier transforms in Eq. (2.12), is seen
to be

Hrcp(f) = Xrep(f) • (2.30)

The amplitude gain of this filter is, by Eq. (2.28),

iip4 tfc] (2.31)
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i.e., the filter is just a unity-gain bandpass filter of bandwidth Be, with a nontrivial

phase response that readjusts the phases of the spectral components so as to

make them destructively interfere everywhere except near the time-origin,

leaving a short duration pulse. Figure 2.2 depicts this filter.

REPLICA CORRELATION FILTER

Xrep(t) p(t)
or =_[•,l_ _| or

FIGURE 2.2

REPLICA CORRELATION FILTER FOR A CAFS WAVEFORM

2.3.3 Replica Correlation Performance for a CAFS Waveform

Since the filter passes the full bandwidth of the signal, the bandwidth at

its output is still B,. Following the example of Eq. (2.11), one can determine that
the duration of p(t) is 1.5/Be. Thus, the time-bandwidth product of p(t) is 1.5.

The overall input-outpwt performance of the replica correlation filter is

summarized in the following table.
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TAB.E 2.1
REPLICA CORRELATION FILTER FOR A CAFS WAVEFORM:

FACTORS OF PERFORMANCE

IN QJLT FACTOR

PEAK AMPLITUDE fBe/Te Be fBeTe

DURATION Te 1.5/Be 1.5"(BeTe)"l

TIME-BANDWIDTH PROD. BeTe 1.5 1.5,(BeTe)-'

BANDWIDTH Be Be 1
TOTAL PULSE ENERGY Be Be 1
IN-BAND NOISE LEVEL No No 1

Most of the entries in the table have been discussed above. Since the
filter has unity gain, it preserves the in-band noise level (due to "sea-state"
noise, diffuse reverberation, or preamplifier noise), as the bottom row indicates.
The pulse energy at the input is the squared-amplitude multiplied by the

duration. (The energies of both quadrature components of the complex signal
are included.) The pulse energy is unchanged by the unity gain filter.

2.3.4 Processing Gain

The V-BCTC amplitude factor is the crucial parameter for improving target

detection performance. The signal amplitude gain, in dB, is

20 logo Bere = 10 log ,o BeTe) . (2.32)

However, the detection time constant has to be reduced by the factor
1.5.(BeTe)-' to fit the shorter duration pulse, and that increases the false alarm
rate of the detector.

To maintain the same false alarm rate one must raise the detection

threshold, and that reduces the effectiveness of the increased amplitude.The
result is that the "processing gain" factor of 10 drops to something between 2.5

and 7.5, depending upon the desired tradeoff between detection probability and
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false alarm rate. The value of 5 is often used in sonar designers' calculations

(Urick, 1983):

True Processing Gain (dB) =_ 5 loglo(Be.Te). (2.33)

It should be remembered that this formula represents only the effect of

inserting a replica correlation filter and adjusting the detection time constant in

accordance with it, at the receiver, under the assumption that the waveform
having the specified values of Be and T. is already in use. It does not include

the effect of having increased the transmitted waveform's time-bandwidth
product in the first place.

The implications can be better explained by means of an example.

Suppose that a sonar is initially designed to use a transmitted waveform that
gives a CAFS waveform at the receiver whose tf-ie bandwidth product is

Be'Te = 1.5, so that the received pulse is of duration Te = 1.5/Be. Then suppose

that the sonar is modified to transmit a waveform having the same power level

and bandwidth, but whose duration is larger by a factor G. (This implies that

the transmitted energy is also increased by the factor G.) Suppose, further, that

a replica correlation filter is used in the receiver, and that it performs in full
accordance with Table 2.1. Then, according to Table 2.1, at the output of the

pulse correlation filter the pulse duration is T, = 1.5/R. as before. Thus, the
detection time constant does not have to be changed. As compared with the

sonar's performance before the modification, the ability to resolve targets and

discriminate against reverberation is unchanged (since the bandwidth and final
pulse duration are unchanged). However, ti,e sonar's ability to discriminate

against noise is improved, due to the G factor increase in transmitted energy.
This G factor causes an increase in the level of the target echo and

reverberation, relative to the noise. In dB, that increase is 10 logic(G) rather

than 5 loglo(G).

The lesson to be learned here is that ore must exercise great care in

deciding whether the situation calls for 10 log I.(')or5 loogto(.).
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2.4 PULSE COMPRESSION FILTERING BY DECONVOLUTION

A matched filter is optimum for target detection in the presence of flat-

spectrum noise. However, if the goal of the filter is simply to shorten the pulse

duration as much as possible, then the optimum solution is a deconvolution

filter instead of a matched filter. This means that one would use a fitter whose

transfer function is H(t) = 1/[X(f)] over the passband and zero outside it,

instead of Hrcp(f) = Xrep(f). The objective is to produce an output spectrum that

looks as much as possible like that of a bandlimited, ideal impulse function-

SL h an impulse has a unit valued Fourier transform over the passband;

therefore, the filter's transfer function is taken to be the inverse of the incoming

signal's Fourier transform.

However, for a CAFS waveform JX(f) is constant over the passband;

indeed, it equals unity if the CAFS waveform is scale normalized, as has been

assumed above. Thus, 1/[X(f)] = X*(f) over the passband, so that the replica

correlation (i.e., matched) filter is a deconvolution filter in that special case.

(This is just another attractive feature of CAFS waveforms.)

2.5 THE CLASSICAL SIGNAL DESIGN PROBLEM

The signal design problem, in its classical form, is to fashion the sonar

transmissions so that the replica gives the desired performance, as indicated by

the entries in Table 2.1. The objective is to make the duration of the

compressed pulse p(t)small enough to resolve targets at a specified range

spacing, and of sufficient magnitude to make targets obvious even in the
presence of noise. The former is purely a function of bandwidth, and the latter

can be achieved simply by scaling up the transmitted pulse power. (NOTE:
Scaling up the transmitter power does not affect xrep(t)as we have normalized it

in Eqs. (2.27) - (2.28); however, one may assume that it effectively reduces the

noise level No1 in Table 2.1.)

Since a tone burst can have arbitrarily large bandwidth, what is the

advantage of using a large time-bandwidth product transmission, instead of a

tone burst of the same bandwidth and energy? There are at least two possible
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advantages of a large time-bandwidth product.

(1) To permit the use of a low power transmitter, by employing a

broadband waveform of long duration (i.e., low power but high energy)

that can be compressed to a duration on the order of 1 .5/B,, with a

corresponding increase in amplitude. A tone burst would need to have a

very short duration to achieve the same range-resolving power, an" its

peak instantaneous power would then have to be extremely large to

attain the same pulse energy. (An example has already been

considered at the end of Section 2.3.3, above.)

(2) To spread out the energy of transmission, in both time and spectrum,

to avoid detection by those who cannot exploit a processing gain of

5 loglo(Be'Te). (They cannot enjoy the benefit of a replica correlation

filter because they do not know the exact waveform.)

In carrying out the design it is often assumed, for the sake of simplicity,

that the frequency response of the sonar receiver will be designed to "pre-

whiten" the noise at the receiver output x(t), and that the sonar transmission will

be tailored so that Xrep(t) has a flat spectrum, so that it can be a CAFS
waveform. The signal design problem then appears to be straightforward,

guided by Table 2.1. However, for various reasons the replica correlation filter

may not work in full conformance with Table 2.1. One such reason is distortion.

2.6 DISTORTION

The replica correlation filter will not perform to the specifications of

Table 2.1 if the receiver signal x(t) has been distorted. If the target is not an
ideal target then its echo will already have been affected by the target's own

impulse response. For example, a very small pebble will act as a Rayleigh

scatterer, taking the derivative of the incident waveform in the process of
reflecting it. The edges of a hard cylinder will apply 450 and 1350 phase shifts

to the echo (Lacker and Henderson, 1990). Targets that are mechanically

resonant will extend the pulse, as will targets that promote circumferential

waves.
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Extended targets will produce even more complex distortions, sometimes

stretching the pulse in a way that defies being compressed to any duration less

than 2L/c, where L is the down range extent of the target. Nevertheless, in

such cases it may be useful to use a very large bandwidth transmission that
"over-resolves" the target to reduce the false alarm rate on reverberation clutter

(for example). One would then choose a detection time constant to match the

down range extent of the target being sought, even though this might be much

greater than 1.5/Be.

Another type of distortion is "flutter". It is the primary subject of this report;

it is defined in Section 3.

2.7 IMPERFECT PULSE COMPRESSION

Section 2.3.3 discussed the performance of a replica correlator as used

for pulse compression filtering. The most important result was Eq. (2.33), which

can also be written as

Proc. Gain = 5 log 10oT (2.34)
T1 J'

where T and Tpc denote the effective durations of an ideal (point target) echo,

as measured at the input and output, respectively, of the pulse compression

filter. If the filter does its job perfectly, then Tpc = 1.5/Be according to Table 2.1.

(Actually, when that value is substituted for Tpc in Eq. (2.34) there is a 0.88 dB

discrepancy between Eqs. (2.33) and (2.34); however, this discrepancy is within

the implied approximation tolerance.) The formula measures the insertion gain
of the pulse compression filter for a CAFS transmitted pulse, as discussed in

Section 2.3.4.

It turns out that this formula is approximately correct even when the action

of the pulse compression filter is imperfect, provided Tpc expresses the actual

duration at the output, even though it might be larger than 1 .5/Be. In the context

of our analysis, "imperfect" means that phase distortion in the sonar echo has

20



caused it to be mismatched to the filter's impulse response. Flutter is one

potential cause of this distortion, as will be discussed extensively in the

remainder of this report. Most of the entries in the "OUT" column of Table 2.1

remain correct despite this type of imperfection, assuming the energy spectrum

of the sonar echo has not been significantly altered by the phase distortion,

except that the duration of the output pulse will be greatei than 1.5/Be and the

time-bandwidth product will be greater by the same factor.

Under ideal circumstances, the signal from the output of the pulse

compression filtei should be fed to a square-law device, followed by a sliding-

window integrator whose window is matched to the ideal compressed pulse

duration, and then to a threshold comparator whose threshold is adjusted to

give the desired combination of detection probability and false alarm rate. If the

pulse compression filter works imperfectly, producing a compressed duration

Tpc that is larger than 1.5/Be, then one must lengthen the integration window to

match Tpc and readjust the threshold. Despite these readjustments the

detection performance will be degraded unless the amplitude of the sonar

echoes is increased by some independent means (assuming the noise level

remains constant). For example, this might be done by increasing the

transmitter power or the directional gain of the hydrophone array. The amount,
in dB, by which the echo energy must be increased to restore the detection

performance is a measure of the loss attributable to imperfections in pulse

compression.

A similar concept can be used to define the processing gain of the pulse

compression filter itself, whether perfect or imperfect. To do this, one imagines

that the pulse compression filter is removed and replaced by a simple wire (or a

simple, unity-gain, bandpass filter matched to the signal bandwidth) that does

no compression whatever. The integration window of the energy detector will

then have to be lengthened to the full duration of the transmitted pulse. The

processing gain of the pulse compression filter is the amount, in dB, by which

the energy of the sonar echoes would have to be externally increased to

restore the original detection performance, assuming appropriate readjustment

of the detection threshold.
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In order to use this definition for processing gain one must be able to

assess the performance of an energy detector as a function of its integration

window. In general, when an energy detector of bandwidth W and integration

window Tdet is used to detect a signal in the presence of white noise whose

(two-sided) power spectral density is No, the signal energy Es required to

achieve the desired performance can be expressed in terms of a function X(-)

of the various detector parameters,

Es = X(Qd,FAR,WTdet) x No, (2.35)

where Qd denotes the desired probability of detection when the signal is truly

present, and FAR denotes the desired false alarm rate. By definition, FAR is

the probability of threshold exceedance when no signal is present, divided by

Tdet. It is expressed in units of inverse seconds.

The function X(.) of Eq. (2.35) cannot be expressed in closed form.

However, Urkowitz (1967) has provided a set of formulas to compute the false

alarm probability, Qo = FAR'Tda, for any specified detection threshold, and to

compute Qd for any specified value of X (i.e., Es/No), assuming that the values

of W and Tdet have been provided. Urkowitz's Eqs. (34)-(37) give these results

in terms of the central chi-squared distribution, which is computable by standard

routines. Using his formulas one can write a two-step routine to compute

X(Qd,FAR,W,Tdet) for any given values of Qd, FAR, W, and Tdt. The first step

is to solve, iteratively, for the detection threshold that gives the false alarm

probability Qo = FAR'Tdet. The second step is to solve, iteratively, for the value

of X. (i.e., Es/No) that gives the specified detection probability Qd, using the

detection threshold determined from the first step. Thus, although the function

X(.) of Eq. (2.35) cannot be expressed in closed form, it is computable by a

straightforward rcutine.

From the definition of processing gain given above it follows that one can

use the function X(.) to calculate

Proc. Gain = 10 log ,, X(QdFARW,+l (2.36)
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in which the value used for W should be Be, the effective bandwidth of the

received echo. An example will illustrate the use of this formula. Suppose a

300 kH- sonar is to be used for detection of acoustically reflective objects, with

the desired detection probability specified as Qd = 0.8, and the desired false

alarm rate specified as FAR = 0.02/s. Suppose, for unknown reasons, it has

been decided to use a transmitted pulse of bandwidth Be = 60 kHz and duration

T = 500 ms, giving a time-bandwidth product of 30,000. Ideally, the pulse

compression filter should compress the duration to 1.5/Be = 0.025 ms.

However, in non-ideal circumstances the compressed pulse might be of longer

duration. Suppose, for example, the compressed duration Tpc takes the

representative values 50 ms, 5 ms, 0.5 ms, and 0.05 ms. Using Eq. (2.36) and

the routine for computing X that was described above, the processing gains for

these Tpc values are found to be 4.04 dB, 8.27 dB, 11.63 dB, and 14.03 dB,

respectively. Notice that the simple formula

Proc. Gain --- 4 loglo[T1 (2.37)

fits these four selected Tpc values to within a tolerance of 0.37 dB, over the four

decades of pulse compression ratios that they span.

With a somewhat larger tolerance, this approximation holds surprisingly

well when the sonar operating parameters are varied over the wide range of

realistic values for high resolution sonar applications. Thus, Eq. (2.37) is

applicable to a broad range of sonar examples, not just the single example for
which it was derived. Certainly this simplified formula is handier for analysis

purposes, since Eq. (2.36) has to be implemented by an iterative computational

routine.

To satisfy tradition, however, the processing gain analyses in the

remainder of this report will use Eq. (2.34) instead of Eq. (2.37). The two

formulas are identical except that a "5" is substituted in place of the "4". This is

done merely to be in conformance with processing gain formulas that are often

found in the literature (Urick, 1983). Because of this acquiescence to tradition,
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the formulas in the remainder of this report overestimate the processing gain by

about 25%, but that has negligible impact upon the general conclusions of the

report.

2.8 USE OF COMPLEX SIGNALS

As noted in the introduction, complex signals will be used throughout this

report; e.g., ej27tfot will be used instead of cos(21tfot). The imaginary part

cannot actually be transmitted and received, but it can be reconstructed at the

receiver. For analysis purposes this reconstruction is assumed to consist of

taking the Hilbert transform of the real part, i.e., of the signal that is received

(Burdic, 1984). The process of reconstructing and adding the imaginary portion

of the original complex waveform can also be expressed in terms of the Fourier

-iransform: the Fourier transform of the real part is taken, its negative frequency
portion is set to zero, and then the inverse transform is taken. The resulting time

domain signal, after doubling its amplitude (to compensate for the energy lost

by masking out the negative frequencies), is the reconstructed signal. Its real
part is the received signal, and its imaginary part is the P 'bert transform of the

real part. An equivalent operation can be done by complex carrier

demodulation, using quadrature (i.e., sine and cosine) carrier signals generated

by a special local oscillator designed for that purpose.

This reconstruction is exact in the case of a pure tone, since sin(2irfot) is

the Hilbert transform of cos(27tfot). However, it is not exact in the case of a wave

burst. For example, the real part of the complex tone burst r(t/T)ej2ntfot is

H(t/T)cos(21rfot), but its Hilbert transform is not exactly equal to

1(t/T)sin(21rfot). This is because there are transient oscillations of short
duration at the endpoints of its Hilbert transform (it does not turn "on" and "off",
instantaneously). However, experience has shown that this inexactitude is not
responsible for serious discrepancies between sonar system analysis and

actual performance, and this is especially true for a waveform whose center
frequency is several times bigger than its bandwidth, and/or whose time-

bandwidth product is large. (Hardware imperfections usually cause larger

discrepancies.) Indeed, cruder methods of reconstructing the imaginary
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component are often acceptable (such as simply delaying the received signal

by ]/(4fo)).

2.9 SECTION SUMMARY

This section has provided a tutorial review of such sonar related issues

as replica correlation and time-bandwidth product theory. The concept of a
normalized constant amplitude flat spectrum (CAFS) waveform has been
introduced, and the implications of using such a waveform were described in
Table 2.1. Processing gain was discussed in Section 2.3.4.
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3. FLUTTER

Anyone who has listened to piano music reproduced by a poor quality

cassette player has heard flutter. The sound is garbled in a way that is quite

different from the distortive effects of additive noise, harmonics, or long decay
reverberation. The distortion is caused by rapid variations in the speed of the

tape as it slides across the playback head. Slower speed fluctuations produce

an effect that sounds a bit different but is mathematically the same (it is called

wow), but we make no such distinctions here.

3.1 CHARACTERIZING FLUTTER

From an analytical point of view, flutter (or wow) results from a

perturbation of the time axis:

t -4 t +(t), (3.1)

so that a signal x(t)is perceived as x[t +E(t)]. Audio engineers understandably

put greater emphasis upon developing mechanical means to avoid flutter than
mathematical means to study it. A more analytical approach has been taken by
researchers intent upon developing more stable oscillators for precision timing

standards (e.g., "atomic clocks"). In that context the phenomenon expressed in
Eq. (3.1) is called phase noise (Lesage and Audoin, 1979; Allan, 1987;

Boileau and Picinbono, 1976). The theoretical development of the next section

closely parallels their approach.

3.1.1 Normalized Frequency Deviation y(t)

One consequence of characterizing the distortion by Eq. (3.1) is that the

perturbation E(t) has the dimensions of time. However, the distortion can also

be characterized in terms of the derivative

y(t) = _Jg(t), (3.2)
dt

27



which is a dimensionless quantity that has been termed the normalized or

fractional frequency deviation in the literature. The reason for this terminology

is simple enough: Suppose a complex pure tone, x(t) = ej2nfro, is distorted by

a perturbation of the time axis of the form of Eq. (3.1), yielding a distorted

waveform

t)= ej2fo[t+e(t)J (3.3)

By definition, the instantaneous frequency finst, is the time derivative of the

accumulated phase, divided by 2n:

fins. = -L Al(7WO [t+e~(t)1) fo + fo y(t).- (3.4)
2n dt

It follows that the deviation of the instantaneous frequency from the nominal

frequency is just foy(tý which reduces to y(t) when normalized by the nominal
frequency fo. Thus y(t) is the normalized frequency deviation. (For example,

the instantaneous frequency is deviated by 15% when y(t)equals 0.15.)

3.1.2 Flutter as a Random Process: Sy(f)and S,(f)

In addition to being dimensionless, y(t) is somewhat more amenable to

being characterized as a stationary random process (in the case of random
flutter). For example, one can characterize y(t) in terms of its power spectral

density

Sy(f) = 1'.T. ( E[y(t)y(t+t)] ), (3.5)
t--)f

where E denotes the expectation. Since the Fourier transform decomposes the

fluctuations in y(t) into component sinusoidal oscillations of frequencies
represented by the argument f of Sy(f), it is appropriate to refer to f as the flutter

frequency in that context.

Lesage and Audoin (1979) state, "Since the class of noise processes for
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which y(t) is stationary is broader than that for which phase is stationary, Sy(f)

should be preferentially used in mathematical analyses." In effect, C(t) is a

Brownian motion type of process (for a precision clock), whereas y(t) represents

the random agitating force that causes e(t) (via integration). The time axis

distortion formalized in Eq. (3.1) can thus be re-expressed as

t -4 t + y(t) dt, (3.6)

in which the lower limit of the integral is left arbitrary since its only effect is to

produce a constant time offset, which is of little consequence in the analysis of

flutter. Furthermore, in most cases of interest (for flutter analysis) y(t) is a zero-

mean random process. To see this, suppose that a constant mean value yo

were added to y(t)in Eq. (3.6). The result, upon integrating the constant, would

be

t -- (l+y0)t + Jy(t) dt, (3.7)

meaning that there would be a scaling of the time axis in addition to the

randomizing of the time axis. To a sonar engineer the factor (l+yo) in Eq. (3.7)

merely indicates the effect of constant Doppler. Its effect upon the sonar is well

known, and theoretically it can be compensated for; i.e., constant Doppler is of

little interest in flutter analysis. Hence, we assume that y(t) has zero mean.

In sonar applications e(t) may not really be a Brownian-type process.

Indeed, if it is the type of flutter that is induced by turbulence in the propagation

medium (see Section 4), then the time axis perturbation cannot wander off to

infinity, assuming the sound path does not deform into coils of infinite length!

Thus, ,E(t) may be a well-behaved random nrocess in its own right, with a power

spectral density SE(f). Since by definition y(t) is the derivative of E(tj the

following simple relation would then apply:
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Sy(f) = (21C f) 2 Sc(f) (3.8)

The reader who is familiar with communication theory will see that the
choice of y(t)or e(t) in our analysis of flutter effects is analogous to the choice of
frequency modulation or phase modulation inputs in the analysis of

communication systems. Both y(t) and C(t) will be used in this report when

appropriate. Either may correctly be referred to as "the flutter process".

A slightly modified version of y(t)that is not dimensionless is defined in

the next section. It has a useful physical interpretation.

3.1.3 Equivalent Observer Velocity cy(t)and Acceleration cy(t)

A plane wave signal propagating with speed c may be expressed as
x(t -c--1 ), where 4 represents the positional coordinate of the observer
measured along the path of propagation. If flutter-distortion of the form of

Eq. (3.1) occurs, then the distorted signal can be expressed as

•"=x(t + E(t) - C-14)

X t+ fy(t) dt -c'

= xtt -c[1 -cy(t) dtI, (3.9)

so that the time perturbation is equivalent to a positional perturbation:

-cy(t) dt . (3.10)

The term under the integral, c y(t), can be interpreted as a velocity that,
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when integrated, gives an equivalent observer displacei-noit that could account

for the distortion of the time axis. Thus, it is appropriate to call the product cy(t)

an equivalent observer velocity. Althotugh it is related to the ncrmalized

frequency deviation y(t) by a trivial constant factor, its physical interpretation

makes it more meaningful in some cases. It ha- the units of m/s, and its power

spectral density is c2 Sy(f).

The instantaneous frequency deviation for a pure tone at frequency f)

can be obtained from the equivalent observer velocity by dividing by thG wave

propagation speed c and multiplying by fo (since foy(t) is the instantaneous

frequency deviation). (Since the speed of electromagnetic waves in the

atmosphere is larger than that of sound in water by a factor of 2 x 1 05, it turns

out that, for the same equivalent observer velocity, the frequency deviation of a

100 kHz sonar due to flutter is ten times as large as that of a 2 GHz radar.)

The derivative of the equivalent observer velocity is cy(t), the equivalent

observer acceleration. As is traditional with measurement of acceleration, it
may be appropriate to express it in "gee" units (i.e., as a ratio of cy(t)/g where g

is the acceleration of gravity).

3.1.4 The Subsonic Flutter Assumption

For purposes of analysis it will be assumed that the normalized

frequency deviation y(t)is small in magnitude:

Iy(t) << 1, (3.11)

i.e., the instantaneous frequency deviation of a pure tone, due to the flutter, is a

small percentage of the tone frequency. Another interpretation is that the
magnitude of the equivalent observer velocity, Icy(t)l, is much less than the

speed of sound c. In that sense the flutter is said to be subsonic. Thus,
"violent" flutter, such as might be caused by a supersonically vibrating source or

reflecting surface, is excluded from the analysis.

One consequence of Eq. (3.11) is that the perturbation of the time axis,
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t-- t+s(tý is monotonic; i.e., it does not cause points on the time axis to overlap

and become disordered. This monotonicity is assured because I +y(t), which

is the derivative of t+s(t), must be strict ly positive by Eq. (3.11).

The subson'c flutter assumption can be expressed in statistical terms as

(2(t)) << 1, (3.12)

or, equivalently,

(cy(tK << c (3.13)

Notice that the left-hand side is the root mean square value of the equivalent

observer velocity cy(t). Since the mean square value of a random process can

be obtained by integrating the power spectral density, Eq. (3.12) is also

equivalent to

J Sy(f) df << , (3.14)

whicn is equivalent to

e(f) df << 42 
(3.15)

since Sy(f) = (2ntf) 2 SE(f). Notice that Eq. (3.15) implies that SE(f) has to roll off

faster than f- 3 for large f.

3.1." Additivity of Cascaded Flutter

Suppose that there are twr flutter processes cl(t) and e2 (t) that act in

cascade, so that a signal x(t)is first distorted to x(t)and then distorted to ýx(t):
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x'(t) = x(t+cl(t)), (3.16)

X(t) = xt+Cx(t)= x( t+E 2 (t) + E1(t+E2 (t) ). (3.17)

This cascaded effect can also be expressed as a net perturbation of the time

axis

t -- t + E2 (t) + El(t+-2(t)) . (3.18)

It will now be argued that this perturbation can be replaced by

t -- t + E2(t) + El(t) (3.19)

as a good approximation. The argument starts with the first order approximation

-2(t) + E4+62(0) - O) + EI(t) + d(ei(t)) E2(t). (3.20)

By definition, ds1 (tYdt is simply y1(t), so the last term in Eq. (3.20) is yI(t)E2(t).

Thus, since lyi(tJ << I (assuming the flutter processes are subsonic), it follows
that the last term is negligible compared to the first term 62(t). As a

consequence, the time axis perturbation formula of Eq. (3.18) can be replaced

by that of Eq. (3.19).

The final result, Eq. (3.19), says that flutter effects are additive. (It implies,

for example, that the combined effect of flutters £1(t) and 2 (t) during recording

and playback of a magnetic tape is indistinguishable from a single, playback-

only flutter that is equal to their sum.)

It follows that the normalized frequency deviations yI(t) and y2(t) are also

additive, since they are just the derivatives of a1(t)and p 2(t).
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3.1.6 Spectral Broadening of a Pure Tone

Flutter can also be characterized in terms of what it does to a pure tone of

arbitrary frequency fo,

x(t) = ej(2rtfot+O) (3.21)

where 0 is a random, uniformly distributed, initializing phase that is included to

make x(t)a stationary random process. Flutter distorts the tone into

x(t) = x(t+c(t)) = ej(2JTfo[t+ r(t)j+0 , (3.22)

which can also be written in the form

i(t) = qo(t)ej(2n fot + O) (3.23)

where the angle modulation phasor qo(Qis

qo(t) = exp[j 2-tfoe(t)] = exp [ f m(t) dt , (3.24)

with m(t) being defined in terms of the normalized frequency deviation as

m(t) = 2cfoy(t). (3.25)

Equations (3.23) and (3.24) describe a basic frequency modulation (FM)

process that has been studied thoroughly in the context of radio communication

theory. In that application m(t) is regarded as the modulating input that carries

the information, rather than as a corruptive distortion of the time axis. Despite

extensive research in FM theory, no analytical method has been found to

compute the spectrum of the FM wave i(t) exactly, except for sinusoidal

modulation, for which it can be computed in terms of Bessel functions (Peebles,

1976). However, good approximations to the spectrum can be obtained in the
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cases of narrowband FM and wideband FM. Luckily, the boundary between

these categories is rather sharp, so that in most situations one or the other of

these approximations can be used.

The behavior of the phasor qo(t) determines whether the FM is wideband

or narrowband. If qo(t) wraps several cycles around the origin before it

unwraps, then the modulation is categorized as wideband. If, instead, the

phasor qo(t) tends to be confined to an angular sector of limited width (up to

one radian), and never (or rarely) wraps around the origin, then the modulation

is categorized as narrowband. In the latter case one can use the approximation

exp(jA) = 1 +jA, with the result that qo(t) can be approximated (at least over

moderately short periods of time) as

qo(t) + 1 j fm(t) dt Qo (3.26)

where Qo is a complex constant. The modulated tone i(t) can then be

approximated as

I(t) (1 + Jm(t) dt Qo ej(27fot + o) , (3.27)

or, in the context of the time-perturbation c(t),

_[I +j 27cfoE(t)] Q0 ej(2n fot + 0) (3.28)

This is almost the same as the classical formula for amplitude modulation

(AM), except for the imaginary factor on e(t). Indeed, the narrowband FM

moduiation of Eq. (3.28) has a pair of sidebands just like regular AM, but they

are 900 out of phase with respect to the pure tone "carrier" at frequency fo.

However, this carrier-plus-sidebands characterization of the spectral
spreading of the pure tone only applies when the flutter is weak, i.e., when the

value of 22tf0Srms does not exceed about a half-radian of angle, so that the
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phasor qo(t) does nt swing around very much. Such weak flutter would not

significantly alter the phase of a sonar waveform centered around frequency fo,

and therefore would do little damage to the replica correlation process.

For the flutter to have a pronounced effect on sonar transmissions it must

be strong flutter, which can be loosely characterized by the condition

2nrfoerms >> 1 . (3.29)

This condition ensures that the phasor qo(t) twirls around the origin
vigorously, giving wideband FM in the radio analogy. The power spectral
density S&x(f) of the signal i(t)can then be approximated (Peebles, 1976; Taub

and Schilling, 1971; Blachman and McAlpine, 1969):

SZ(f) =_ 21cpm(2it(f-fo)), (3.30)

where Pm(') is the probability density function of m(t). The term 27t that
appears as the leading factor on the right-hand side is required to make the
integral of Si(f) equal to unity, since i(t) has unit power. Since the complex

factor ej(2bfot + O) in Eq. (3.23) merely shifts the spectrum by fo, it follows from

Eq. (3.30) that the power spectral density of qo(t) obeys an even simpler rule:

So(f) = 21cpm(2n f) . (3.31)

The results are more useful when expressed in terms of the probability

density py(.) of y(t). Since m(t)=2%foy(t) (by definition), it follows that

pm(OQ) 2rtfo P • 2 tf) (3.32)

Substitution into Eq. (3.30) then gives
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which shows how the point statistics of the normalized frequency deviation of

the flutter cause speciral broadening around the tone frequency fo.

The bandwidth of this spectral broadening is an important measure of the

strength of the flutter. It will be denoted as Bo. To compute Bio one may use

the effective-bandwidth formula of Eq. (2.2), with Sx(f) used in place of the

energy spectrum, i.e., I2
[j S•(f) df

Bjo = " (3.34)

f S (f) df f Sx-(f) df

(The numerator has unit value because i(t) has unit power.) After substituting

for Sý(f) from Eq. (3.33) and simplifying the variable of integration, one obtains

B = fo (3.35)

) •• p(o)da

In many sonar operating environments the flutter can be expected to
have Gaussian statistics, especially if it is induced by the medium, so that

PY((X) exp • (3.36)
Yrms 227i _ 2(Yrms)21

(NOTE: The mean value Y would normally be assumed to be zero, although

this is not mandatory.) When this density is substituted into Eq. (3.35) and the
integration is carried out, the result is

Bjo = 2f-ff ynns fo . (Gaussian Flutter) (3.37)
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Suppose, rather than being Gaussian, y(t) is distributed uniformly within
some interval of length K, so that its probability density function is

PY(K) I-n (3.38)

This would apply to flutter having a sawtooth or triangular wave pattern of

oscillation, for example. The uniform distribution of Eq. (3.38) can also be

expressed in terms of the root mean square (rms) value (i.e., standard

deviation) of y(t), which is yrms = K/1--:

= ( 1-) (3.39)

Yrms f "12 Yrms 12

When this is substituted into Eq. (3.35), the result is

Bjo = 2F3 y rms fo . (Uniform Flutter) (3.40)

On the other hand, suppose that the flutter exhibits sinusoidal variations;

i.e., the normalized frequency deviation is

y(t) = y + f2 yrmssin(242fft + il) , (3.41)

where ff is the flutter frequency and 71 is a random starting phase (to make y(t) a
stationary random process). The probability density function is (Papoulis, 1965)

Py(a) = (002y~rms2 ( 3/ 2 y)ms (3.42)

which exhibits infinitely tall cusps at ±"2Yrms, because a sinusoid tends to
linger near its maxima and minima. When this density is substituted into

Eq. (3.35), the integral fails to converge. However, in this particular case there
is an easy alternative for computing the duration. From Eq. (3.33) it is clear that

the power spectral density of the fluttered tone xi(t)has the form
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Sý(f) _p C)a ) -* f.fo, (3.43)
fo fo

and that means that S•(f) is confined to an interval whose endpoints are

punctuated by tall cusps at values of f that satisfy

-fo_ y f ffyrms (3.44)

fo

i.e., at

f = (1 +Y)fo ±2 -y rmsfo, (3.45)

which implies that the bandwidth B?0ois the width of that interval:

Bo = 2"'-Yrms fo. (Sinusoidal Flutter) (3.46)

It is interesting that the formulas for the three different types of flutter

statistics are almost the same; indeed, one can write

Bo = 2xV1/2", F3, or f-} Yrms fo (3.47)

where V-, F3, orf- is selected depending upon whether the flutter is

sinusoidal, uniformly distributed, or Gaussian. The shapes of the fluttered-tone

spectra are different in these three cases, however. Gaussian flutter gives a
Gaussian-shaped spectrum, uniformly distributed flutter gives a flat spectrum,
and for sinusoidal flutter the spectrum has two distinct peaks, with a trough of

reduced level between them.

It should be noted that the term "flutter statistics" has been used here in

reference to the normalized frequency deviation y(t), rather than the time axis

perturbation £(t). If y(t) is sinusoidal or has Gaussian statistics then the same
can probably be said for £_(t). However, if y(t) looks like a triangular or sawtooth

wave, so that its probability density is uniform, then •(t) will exhibit parabolic
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arcs, and will not have a perfectly uniform distribution. (Since y(t) is the

derivative of e(t), it follows that e(t) is the integral of y(t), and straight lines

integrate to parabolic arcs.) The simple truth is that spectra' broadening is more

intimately related to y(t)than to e(t).

It is interesting to note that for the pure tone, spectral broadening of a

100 kHz sonar due to flutter is ten times as large as that of a 1 GHz radar, for

the same equivalent observer velocity. (See discussion in Section 3.1.3.)

3.2 SOURCES OF FLUTTER IN ACTIVE SONAR

3.2.1 Motions of the Sonar Target

A sonar target resting upon the seafloor in a moderate current would

probably not vibrate enough to cause appreciable flutter. However, a self-

propelled target would be subject to turbulent forces (similar to the forces that

cause cable strumming), possibly inducing enough random velocity of the

acoustic reflecting boundary to distort the sonar echo. If the only source of

flutter is random vibration or quivering of the sonar target, then the value of the

normalized frequency deviation y(t)of the flutter is

2 Vtgt t - I- Tdel)

y(t) = ( - 2 (3.48)C

where c denotes the speed of sound, tdd is the round trip echo delay (from

pulse transmission to echo reception), and vtgt(t) is the target's vibrational
velocity component toward the sonar at time t. This formula may be verified by

integrating both sides of Eq. (3.48), whereupon the left side becomes the time

displacement e(t), and the right side becomes twice the target displacement

due to vibration (i.e., the decrease in the round trip sound path) divided by the

speed of sound. The time axis distortion seen in the arriving echo at time t was,

in reality, induced when the sound was reflected from the target at time t - I-1Tdd.
2

A simpler interpretation of Eq. (3.48) is that the equivalent observer
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velocity cy(t) is twice the target velocity, with an appropriate delay.

3.2.2 Including the Effects of Platform Motion

If the sonar platform is a moving vehicle, then it may undergo more
turbulent random motions than the target. If random motion of the sonar
platform is added to Eq. (3.49) the result is

y(t)= Vso(t- del) 2 + ,tt( (3.49)
C C C

where vson(t) is the platform's random velocity component toward the target at
time t. The first and third terms on the right characterize the time axis distortion
induced at the times of transmission and reception, respectively. The

summation of contributions in Eq. (3.49) is based upon the additivity of

cascaded flutter, as discussed above in Section 3.1.5.

It should be noted that some minor approximations have been made in
Eq. (3.48). For example, the instant of reflection may not fall precisely at the
middle of the echo delay 'dd , if the platform is in motion . Furthermore, the
directions to and from the target could be time varying, and the directions of the
pertinent ray paths ought to be used for exactness. However, since the random
velocities vtg,{t) and vson(t) can only be quantified in statistical terms anyway, all

of these approximations should be negligible (barring violent platform and
target velocities on the order of the speed of sound in water).

It should be evident that the subsonic flutter assumption of Section 3.1.4
has a more tangible interpretation when the flutter is caused by target and/or
platform motion. As expressed by Eq. (3.13), the subsonic flutter assumption
means that the mean square value of the equivalent observer velocity cy(t) is
much less than c2, and that the mean square perturbational velocities of the
target and/or platform are, through Eq. (3.49), much less than c2. To put it
another way, making the subsonic flutter assumption is equivalent to supposing
that the average, random motion kinetic energy of the object (target or platform)
is much less than what its kinetic energy would be if it were traveling at the

speed of sound in water.
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3.2.3 Likely Motional Spectra for Sonar Platform and Target

The power spectral density Sy(f) due to turbulence-induced motions of

the platform and/or target will exhibit the same spectral characteristics as their

velocities do. Due to mass loading and various dissipative processes these

spectra should roll off rapidly with increasing frequency (although that

assumption may be violated when resonant phenomena dominate).

As noted above in Section 3.1.4, for subsonic flutter the spectrum So(f)

has to roll off faster than f- 3 for large f. Unfortunately, data on the random

perturbational motion spectra of sonar platforms and targets are not readily

available. However, Blake (1986), in his book on flow-induced sound and

vibration, provides the following formula for the mean square vibrational velocity

of a plate excited by hydrodynamic flow, measured in a bandwidth Af centered

around frequency f:

) 11T h ( Q) f) (3.50)

The formula is valid for f >> fh , where

n _4,

fh = hydrodynamic coincidence frequency (akin to resonance),
Uo = average free-stream velocity,
1TT = total loss factor,
po = fluid (water) density,
pp = plate density,

8* = boundary (shear) layer displacement thickness,
h = plate thickness,

c1 = longitudinal wave speed, and

Q = friction coefficient.

If the sonar transducers are mounted on such a plate (the plate being, in
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effect, the sonar platform) and if it is assumed that the velocity V in Eq. (3.50) is

represented by the vson(t) of Eq. (3.49), then the component of the power

spectral density Sy(f) contributed by platform motion at the time of reception will

obey

(2 !( ) ( ý (I , - - 8 (3.51)

for f >> fh . Since Sy(f) = (2n f)2 SF(f) and n 4, the rolloff characteristics of

Sr(f) at high flutter frequencies will be described by

S(f) 0c f-7. (3.52)

The flutter contribution at the time of transmission would be similar.

Strictly speaking, Eq. (3.52) will apply only to the flutter contributed by

flow-induced vibration of a transducer mounting plate; however, similar

behavior might apply to other types of mounting configurations. On the other

hand, Eq. (3.52) would not apply to gross, rigid-body motions of the sonar

platform (or the target). If the turbulent, fluctuational force on the sonar platform

were assumed to have a "white" spectrum, then the power spectral density of

the rigid-body velocity components of the vehicle would roll off as f- 2 at high
flutter frequencies, due to the force-integrating effect of the inertial mass. This

means that Sy(f) would roll off like f- 2 as well, with the result that

S,(f) C f-4 (3.53)

The condition required by the subsonic flutter assumption, namely, that

Se(f) must roll off faster than f 3 , is satisfied by both Eqs. (3.52) and (3.53). In

practice, the truth may lie somewhere between the two.
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3.3 BEHAVIOR AT LOW FLUTTER FREQUENCIES

The subsonic flutter assumption, as expressed in Eq. (3.14) and repeated

here for convenience,

Sy(f) df << 1, (3.54)
f~ +0

demands that Sy(f) cannot grow as fast as 1/f at vanishingly low frequencies,
because the integral would otherwise be infinite. Since S,(f) =(2ntf)2 S (f),

this means that S,(f) cannot grow as fast as 1/f 3 at low frequencies.

Since the mean square value of c(t), i.e., rms, is the integral of S,(f), it

follows that P-2ms will be infinite if Se(f) grows as fast as 1/f at low frequencies.

However, for flutter that is due to random vibratory motion of a moving sona

platform it may be proper for E(t)to exhibit the characteristics of Brownian-type

random process, including an infinite value of c}ms (since the positional error

due to micro-navigational imperfections may, indeed, grow without bound). !n

such cases it is better to use y(t) and Sy(f) than e_(t) and SE(f).

Yet, for the type of medium-induced flutter that is studied in Section 4, the

time axis perturbations cannot exhibit the characteristics of a Brownian-type

random process, since propagational variations in the medium will not cause

the sound path to grow or shrink without bound. Indeed, the experimental

results to be surveyed in Section 4 indicate that the time axis perturbations

virtually never exceed a few milliseconds. For this kind of flutter it must be true

that e2ms is finite, and that S,(f) cannot grow as fast as 1/f3 at low frequencies.

3.4 SECTION SUMMARY

Flutter has been defined and described in terms of a time axis

perturbation E(t), a normalized frequency deviation y(t) (the time derivative of

Fe(t)), an equivalent observer velocity cy(t), and an equivalent observer
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acceleration c,(t). Its characte,istics have been discussed in terms of power
spectral densities Se(f) and Sy(f), where dclenotes the flutter frequency, and in

terms of the spectral broadening that it impresses upon a pure tene. Several
properties and bounds for the flutter parameters have beepn introduced for tater

use.

An argument has been offered that flutter induced by sonar platform
motion will probably be characterized by a dramatic rolloff in the spectral

density SE(f), with asymptotic behavior lying somewhere between f 4 and f 7 ;
however, no data were available to estimate the magnitucde of flutter from this

source. Flutter induced by turbulence in the medium is examined in the next

section.
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4. FLUTTER CONTRIBUTED BY THE PROPAGATION MEDIUM

The ocean medium may contain sounid speed inhomogeneities that

move across the sonar's line-of-sight. This will be the case if the sonar is

looking across a river's outflow, for example, or if the sonar platform is moving

rapidly through a region of pronounced temperatuwe inhomogeneities. Time

axis distortions may then occur due to rapid variations in the speed of sound

along the acoustic path. At first glance it might appear that the rather extensive

body of literature on wave propagation through random media (e.g., Ishamaru,

1978) would provide ample tools to characterize this type of di-.tortion.

Unfortunately, previous investigators have focused their attention upon many

issues that are of limited interest here. Nevertheless, some useful informat',on

has been developed and experimental studies have been made. This section

reviews some of that prior work, and attempts to interpret ii in terms of

contributions to flutter.

4.1 PROPAGATION IN AN INHOMOGENEOUS MEDIUM

Sound speed inhomogeneities in the ocean are caused by internal

waves, layering (including fresn water boundary layers), and turbulence. The

word "fluctuation" is commonly used to describe the variations in sound speed

(or, equivalently, the refractive index) that result, as well as the variations in

acoustic phase and/or amplitude. However, in much of the mathematical
literature this fluctuation is regarded either as a variation with spatial position, or

as a statistical ensemble of possible outcomes, rather than as a time

dependence. Caution must therefore be exercised to correctly interpret the term
"spectrum", since it oftens refers to a spatial spectrum ra. er than a temporal

one. Temporal spectra are used in experimental studies of the effects of
internal waves and tides, and caution must be used in interpreting their results

because of a notational peculiarity: In that literature the symbol (0 is often used

to denote cycle.3-per-unit-time rather than radians-per-unit-time, presumably
implying a sin(27cot) oscillation. This atrocity is usually camouflaged to some

degree by the choice of hours as time units, so that o is expressed in cycles per

hour (cr'h). The reader will be pleased to note that the material presented in

this r.port has been sanitized, using f where appropriate instead of (o.
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The traditional approach to accommodate inhomogeneities can be

loosely characterized as follows: In the absence of soundspeed

inhomogeneities a spherical wave propagates from the source without

perturbation, its amplitude decaying according to the law of spherical

spreading; however, in the presence of (fixed) homogeneities the wavefront is

distorted by bumps and dimples. These bumps and dimples obviously cause

phase perturbations, but they also affect the amplitude because they alter the

natural progression of spreading loss (by locally de-focusing or re-focusing the

wavefront). The usual viewpoint taken by mathematical analysts is to assume

that the inhomogeneities and the pattern of bumps and dimples are spatially

random, but fixed in time. An exception is sometimes made to allow for the

measurement of "scintillation drift", where the frozen pattern of medium

inhomogeneities drifts slowly across the field of view.

Another limitation of the literature is that the analysis is always geared

toward transmission of pure tones rather than broadband signals. It is also

generally true that phase fluctuations are not considered without including

amplitude fluctuations as well. Indeed, phase fluctuations are given scanty

treatment when prediction of sonar detection ranges is the primary goal. The
reader is also cautioned that virtually all the work has assumed one-way
propagation, but the results obviously extrapolate to round trip propagation,

within some degree of approximation.

4.2 DUDA et al.

4.2.1 Theoretical Results of Duda et al.

Duda, Flattd, and Creamer (1988) considered two anisotropic, fine scale
models of sound speed fluctuation (the Garret-Munk ocean internal wave

spectrum and a simple power law, wavenumber spectrum for spatial

dependence of sound speed), and an isotropic microscale model (based upon

a "Kolmogorov-type isotropic inertial-convective scalar subrange spectrum") to

account for variations over distances of 1 m or less. They assumed weak
2fluctuations in the unsaturated regime, in which the scintillation index al was
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less than 0.3 (which allowed the Rytov approximation to be used). The index 0j2

is defined as the normalized variance of sound intensity I:

o,2 _ E(I2) - [E(I)]2
I [E(I)] 2  (4.1)

where E denotes the expectation operator. Using the Garret-Munk model, they

concluded that the unsaturated regime included all cases where the product of

frequency and the square uf the (one-way) range is less than 1011 m2/s, which

is met (for example) by 90 kHz at 1.1 km range.

4.2.2 Experimental Results of Duda et aL

Duda et aL's experimental results were quite interesting. They

conducted propagation studies by lowering transducers through holes cut in ice
floes floating between Greenland and Elsmere Island, where the water was

380 m deep. They used 1 ms pulses at frequencies of 10, 20, 30, 60, and

75 kHz propagated (one way) horizontally across ranges of 270, 551, 820, and

1077 m. As mentioned above, they regarded the depth dependence of acoustic

intensity as "fluctuations". Indeed, their assumption that the random fluctuations

of both sound speed inhomogeneities and acoustic field parameters were
frozen in time was evident in their experimental procedure: They raised their

transducer through a depth spa,1 of 60 m at a rate of 0.5 m/s while recording

sampled intensity values, and declared that "because the time required for each
profile was short compared with the evolution time scale for the ocean sound

speed perturbation spectrum, these [data] can be treated as instantaneous

vertical profiles of sound pressure intensity I from a fixed source."

No phase data were recorded by Duda et aL, but it is noteworthy that

their measured scintillation indices were well under 0.3. In fact, they were less

than 0.1 in most cases even at the 1.1 km range. This observed constancy of

amplitude, on the order of ±1 dB, suggests a rather stable propagation path

(except that we must always remind ourselves that the stability is with respect to

position, not necessarily with respect to tir e).
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4.3 FARMER et aL

Fortunately for our purposes, phase data were recorded by Farmer

et al., in their experimental studies in the Cordova channel between

Vancouver Island and James Island (Farmer and Clifford, 1986; Farmer,

Clifford, and Verrall, 1987).

4.3.1 Test Environment of Farmer et aL

Their experiment used a pair of receivers placed upon one slope of the

channel at a depth of 15 m, and a transmitter on the opposing slope of the

channel at the same depth, at a distance of 660 m. The channel was 34 m deep

at the center, so that the line-of-sight was approximately at mid-depth where it

crossed the center of the channel. The two receivers were spaced 99.3 cm

apart, along a horizontal line that was orthogonal to the sound path; i.e., they

were positioned to intercept the incident wavefront simultaneously. The two

receivers were used to measure the spatial correlation of the incident field, from

which it was intended to infer the flow rate of the inhomogeneities across the

sound path, caused by tidal cycles. Their computational method had been

established in prior work (Clifford and Farmer, 1983).

Farmer et al. were apparently quite successful in their attempts to

develop a remote method of cross-flow measurement. However, of greater

interest to us is the fact that they measured phase (and amplitude) histories for

the two receivers separately, and supported their study with extensive

oceanographic recordings and analyses. A conductivity/temperature/depth

(CTD) probe was used at 15 min intervals to determine sound speed as a

function of depth (as inferred from temperature and salinity). Due to tidal mixing

there was little or no gross bending of the sound ray across the channel, so that

it remained essentially horizontal. However, there were microscale

irregularities in the sound speed profiles that were adequate to cause

fluctuations. Current meters were moored at three points in the channel. The

tidal flow rates were roughly sinusoidal with a period of one day, with peak

currents of about ±1 m/s. The investigators provided the following summary of
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oceanographic data (Farmer, Clifford, and Verrall, 1987):

"When the current is strong and the water well mixed, only a high-

frequency [i.e., rapidly-varying with depth] temperature fluctuation of

small amplitude appears on the CTD record. As slack water

approaches, warmer, fresher water appears near the surface, giving way

to a well-mixed layer bounded by stratification above and beneath ...
There is less variability within the enclosed mixing layer at slack water,

but this subsequently increases until the profile again becomes
relatively homogenized. The variability in the time series observation,

however, remains substantially greater during the flood tide than during

the ebb. Moreover, [CTD] profiles obtained during the flood tide display

a significantly greater variability than corresponding ebb profiles."

4.3.2 Instrumental Technique of Farmer et al.

The acoustic transmissions were centered at 86 kHz (giving a

wavelength of 1.72 cm), and the projector's nominal (circular) beamwidth was

100. The main pulse was of 25.4 ms duration, consisting of 127 consecutive "bit
intervals" of 200 g±s duration each (Farmer and Clifford, 1986). These bit
intervals were modulated by a maximal-length linear code sequence of length
127 bits (Dixon, 1984; Eaves and Reedy, 1987; Proakis, 1989). The 86 kHz

carrier was on/off keyed by the binary code (Verrall, 1990). The autocorrelation
of the complex envelope theoretically had the form of a triangular pulse whose
base was of 400 gs duration. Experimental observations confirmed the theory
(Farmer and Clifford, 1986). Indeed, after pulse compression (i.e., matched
filtering by "multiplication of the [complex] detected signal with the

corresponding code template"), the direct path signal amplitude displayed
precisely that shape, but with a slightly rounded peak. A second arrival was

also visible; its peak occurred about 600 p.s later, roughly consistent with the
predicted arrival time of surface and bottom reflected paths. (Since the sound

path was at mid-depth, 15 m, in the center of the channel, the specular surface-

bounce arrival should have arrived about 450 ps later, almost simultaneously
with the bottom-bounce path.) After pulse compression filtering the received

pulses were remarkably repeatable.
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The coded pulse used by Farmer et al. had interesting properties. They

actually used two additional 127-bit length transmissions, packed around the

main pulse to act as "guard codes to improve the signal-to-noise ratio, [but] the

useful signal was derived only from the center sequence." Thus the

transmission consisted of "three identical consecutive 127-bit maximal linear

coded sequences". Since the three compressed pulses would then be

separated by 25.4 ms intervals, there was no danger of confusing them. The

complete 76.2 ms ( = 3X25.4) pulse train was transmitted five times a second,

and the received data were recorded on an almost continuous basis for the

duration of the experiment. Although the transmission consisted of three

consecutive copies of the binary code sequence, the matched filter used only

one copy, and applied the binary code as (-1 ,+1) multiplying factors (i.e., as

phase-reversal keying), rather than as on/off keying in the manner used for

transmission (Verrall, 1990). The purpose was to obtain a compressed pulse

having a well-isolated central peak, surrounded by a (theoretically) zero-valued

pedestal that extended 25.4 ms in either direction to the guard-code peaks,

although a nonzero range-lobe structure was present beyond the peaks.

4.3.3 Phase Fluctuation Data of Farmer et aL

Farmer et al. have published phase data in two different journal articles.

Each sample of phase data was taken as the argument of the complex

envelope at the output of the matched filter, sampled when the magnitude

reached its peak, with no smoothing having been done (Verrall, 1990). A

simple phase-unwrapping algorithm was used to track the phase changes. The

transmitting and receiving electronics were connected by cable to the data
recording electronics, so there was no difficulty in maintaining a common phase

reference. The phases were measured independently in the two hydrophone

output channels. The two phases always tracked each other fairly closely, even

though the hydrophones were spaced 99.3 cm apart.

In their JGR article (Farmer, Clifford, and Verrall, 1987) the researchers

plotted 11 min phase histories for a quiescent period on 26 August 1984, which

they characterized as "very well-mixed conditions during a weak flood (current =

0.1 m/s)", and a more turbulent condition on 28 August 1984, described as
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"stronger flow at a time of intense mixing (current = 0.8 m/s)". For the quiescent

data the phase changed very slowly and very little. It showed random

undulations of about ±150 over periods of 30 s, with a slight long term drift. (The

pulse transit time was observed to vary by 250 gis during each tidal cycle, which

corresponds to 21.5 c~cles or 77400 of accumulated phase shift. This works out

to about 50 of phase drift per minute, assuming that the variation is roughly

constant between flood tide and ebb tide.) The phase plots from the two

hydrophones were almost identical, except for a phase offset that was due to a

slight misalignment of the transducer pair relative to the incident wavefront.

For the more turbulent condition on 28 August the phase history showed

greater and more rapid variation. In the 11 min plot there was one full cycle of

roughly sinusoidal variation of phase of about ±1 800, numerous small variations

of about ±700 occurring over periods of about 20 s, and smaller variations over

shorter periods. Only occasionally did the phase vary by more than 300 within a
10 s span.

Phase plots covering a different 11 min period, on 25 August 1984, were

published in the IEEE paper (Farmer and Clifford, 1986). The current was not

specified, but the condition appears to be that of moderate turbulence, although

not quite so much as for the 28 August data.

One of their phase plots was hand digitized by the present author, and is

shown in Fig. 4.1.

4.3.4 Calculations Using the Data of Farmer et aL

The data of Fig. 4.1 can be divided by 3600 and multiplied by the carrier

period (11.628 ps) to get the time perturbation E(t), then numerically

differentiated with respect to time to get the normalized frequency deviation y(t),

and finally multiplied by the speed of sound (1490 m/s) to get the equivalent

observer velocity cy(t). The result is plotted in Fig. 4.2. (One outlier, probably

due to noise that was introduced by the present author's hand-digitization, was

off-scale and is not shown.)
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FIGURE 4.1
86 kHz PHASE VARIATIONS AT 660 m OVER AN 11 min PERIOD,

TAKEN FROM FARMER AND CLIFFORD (1986)

What is significant about Fig. 4.2 (see next page) is that the equivalent

observer velocity is so small. The root mean square of the data shown in the
figure is only 0.0634 cm/s. To put this in perspective, suppose that a self-

propelled sonar platform has a 4-blade propeller turning at 600 rpm (i.e., 5 Hz),

with a stationary strut located so close to the propeller that it impedes the flow to

some degree. As each blade passes the strut it will temporarily lose efficiency,

so that there will be a negative force pulsation at a rate of 20 Hz (= 4 X 5 Hz).

Suppose this force produces a peak acceleration of 0.01 g, which is the
threshold of perception for a human observer, at 20 Hz, under ideal quiescent

conditions (Harris, 1988). Then the root mean square vibrational velocity will be

0.01x 9.8 rn/s
Vrms - 0.2 x 9. x 2 0.055 cm/s (4.1)
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FIGURE 4.2
EQUIVALENT OBSERVER VELOCITY CALCULATED BY THE

PRESENT AUTHOR FROM THE PHASE DATA OF FARMER et aL

which is almost as large as the overall 0.0634 cm/s equivalent observer velocity
shown in Fiti 4 2, and greatly eyneeds its components of comparable frequency

(observe that most of the 0.0634 cm/s amplitude of Fig. 2.3 is due to oscillatory

energy at much lower frequencies, of the order 0.02 Hz). Recall, also, that the

data of Fig. 4.2 were for a relatively turbulent condition. During quiescent
conditions the fluctuations were much less, by at least an order of magnitude.
What this example indicates is that the propagational fluctuations due to

medium instabilities are equivalent to very small platform vibrations, so small as

to be insensible to human observers (but perhaps not insensible to a sonar).

4.4 EWART et al.

The Cobb Seamount experiment, done in 1971, had a transmit/receive

geometry similar to that of Farmer et al., but on a larger scale. The following
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summary paraphrases the one given by Ewart (1976).

4.4.1 Test Environment of Ewart et al.

The transmitter and receiver towers (each 15 m high) were positioned at

depths of 973 m and 951 m, respectively, on the slopes of opposing seamounts

at a separation of 17.2 km. The seafloor dropped off to a depth of about 3000 m

between the two seamounts. Extensive oceanographic data were recorded,

including temperature, salinity, and sound velocity profiles using dropped

probes and the self-propelled underwarter research vehicle (SPURV). Ray

tracing analysis indicated that the main refracted path was concave-upward,

with its lowest point at about 1200 m depth. Currents were measured

periodically at the transmitter and receiver locations. The largest observed

current was 12 cm/s, but most of the time it was less than 5 cm/s.

4.4.2 Instrumental Technique of Ewart et al.

The experiments were conducted at two frequencies: 4.166 kHz and

8.333 kHz. The receiver consisted of three hydrophones positioned along a

horizontal line that was approximately orthogonal to the sound path. The
hydrophones were spaced so as to permit correlation studies at separations of

5, 10, and 15 m. The transmitter had a strong vertical directivity, with a

beamwidth of 220 at 4.166 kHz and 110 at 8.333 kHz. The receiving

hydrophones also had strong vertical directivity, with beamwidths of 300 and

150 at the two frequencies.

The transmissions consisted of eight cycles of 4.166 kHz, or 16 cycles of

8.333 kHz, giving pulse durations of 1.92 ms in both cases. The transmissions
were repeated every 15.72864 s, with alternation of the choice of frequency,

giving a complete pair of transmissions (both frequencies) every 31.45728 s.

The received waveforms were digitized (9 bits plus sign) at 65.666 kHz, stored

in a temporary memory, and then telemetered to the data recording ship. The

telemetery was in two stages: by a short range acoustic link (at 45 kHz carrier
frequency), and then by a buoy-to-ship radio link (at 253.1 MHz carrier

frequency). Since there was no wire link between the transmitter and receiver,

reliance had to be placed upon a pair of precise electronic clocks to maintain
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instrumental phase synchronism. The clocks were tested for six months prior to

the experiment, establishing that their timing frequencies agreed to within one

part in 109. A total of 16,500 pulse transmissions of each frequency were

recorded during 85% of a 144.5 h period.

The first millisecond of each received pulse was examined to extract

phase (and amplitude data). It should be noted that Ewart (1976) used the word
"phase" to refer to what we have called the time perturbation C(t) in Section 3.1

We shall use our terminology in paraphrasing his results.

4.4.3 Experimental Results of Ewart et aL

Ewart extracted the time perturbation e(t) from the following three

independent calculations.

"(1) From the discrete Fourier transform of the pulse evaluated at the

acoustic center frequency and the two frequencies adjacent to it,

(2) graphically from digital computer plots of every 50th pulse (the time

between 50 pulses is less than the correlation time of the phase), and

(3) by a one-parameter least squares fit of the observed pulse axis

crossings to the expected axis crossings using the time delay as the

parameter."

The values of e(t) were computed for each of the three hydrophones, for

each of the two pulse center frequencies, and for each transmission, i.e., every
15.72864 s. The amplitudes of the received pulses were also determined. This

was done by adjusting the amplitude of an ideal sine wave (of duration 480 4s),

offset in time by the value of C(t)that was already determined, to achieve a least

squares fit to the received data. Ewart, in his Fig. 8 (Ewart, 1976), plotted the
measured values of C(t) for hydrophone 1, for the entire 144 h period of the

experiment, for both center frequencies (4.166 kHz and 8.333 kHz). There were

some gaps in the plots, totaling about 20 h. During about half of this gap-time

the telemetry was lost, and during the other half the data were censored
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because there was deemed to be multipath interference. The first 88 h of 8 kHz

data were hand-digitized from Ewart's Fig. 8 by the present author, and are

presented here as Fig. 4.3, with the gaps filled in by straight lines.
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FIGURE 4.3
TIME PERTURBATIONS OF AN 8 kHz PULSE AT 17.2 km DURING

AN 88 h PERIOD, TAKEN FROM EWART (1976)

In this plot E(t) looks like a typical random process exhibiting low

frequency emphasis. In fact, it looks rather like the phase data of Farmer et al.

that were shown in Fig. 4.1, except that the Farmer et aL data covered only a

span of 11 min instead of 88 h, and showed a maximum perturbation of only

about 13 I.s (4000 at 86 kHz) instead of ±1000 pgs. However, the reader will
recall that Farmer et al. reported a 250 pts variation in pulse time of arrival over

the course of the tidal cycle; furthermore, their sound was transmitted over a

660 m span as opposed to the 17.2 km span of Ewart. If these differences are

taken into account, the two experimental results exhibit a modicum of similarity.

58



4.4.4 Analysis of Ewart's Data

For high resolution sonar applications the phase variations that occur

within seconds are much more important than those that occur over several

hours or days. Unfortunately, E(t) was only sampled every 31 s in Ewart's

experiment. However, it may be possible to extrapolate the statistics from long

term to shorter term variations by using Ewart's studies of the power spectral

density of E(t). In our notation this density is denoted as SE(f), where f denotes

the flutter frequency (see Section 3). Ewart estimated S,(f) by computing a

16,384-point, discrete Fourier transform of 6_(t) with a Hamming window, and

then applying logarithmic smoothing to the resultant periodogram. For

4.166 kHz as well as 8.333 kHz transmissions, Se(f) rolled off like f 3 . To study

this behavior more carefully, Ewart plotted a flattened version of the power

spectral density, f3 Sj(f), in his Fig. 16. The present author has hand digitized

his plot; it appears below as Fig. 4.4.
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FIGURE 4.4
CUBIC-FREQUENCY SCALED POWER SPECTRAL DENSITY OF
TIME PERTURBATIONS OF 8 kHz PULSE, FROM EWART (1976)
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There are a number of comments to be made regarding Fig. 4.4:

(1) Ewart used cycles per hour (cph) for his flutter frequency axiz. To get

Hz in Fig. 4.4, his abscissas had to be divided by 3600 s/h.

(2) Ewart expressed SE(f) in units of (ps)2 /(cph), so he naturally

expressed t3 SE(f) in units of (l.S) 2 .(cph) 2 . To get Fig. 4.4, his ordinates hal to

be divided by [(10 6 tis/s)-(3600s/h)] 2 , which resulted in ordinates having the

dimensions of squared cycles, the time units having canceled cut. The time

units actually canceled out in the ordinate, of Ewart's plot, of course, but it had

not been obvious.

(3) The first three peaks (i.e., local maxima) in the spectrum are not

artifacts; they are tidal effects. They are the diurnal frequency of 1.16 X 10-5 Hz
(period = 24 h), the semidurnal frequency of 2.24 X 10-5 Hz (period = 12.4 h),

and the quarter-diurnal frequency of 4.48 X 10-5 Hz (period = 6.2 h).

(4) The solid line marked "MR" and the dashed line marked "D"

represent theoretical predictions that Ewart attributes to other researchers,
namely, Munk and Rosenbluth (MR), and Desaubies (Lu). The lines are drawn

over an applicable range of flutter frequencies, from the "inertial frequency" of
1.68 X 10-5 Hz (period = 16.5 h), to the Vdisdlt. frequency at 1000 m depth,
namely 2.41 X 10-4 Hz (period = 1.15 h).

(5) Wherever the cube-frequency-scaled spectrum curve in Fig. 4.4 is

approximately level, it means that Sj(f) - f3. This is clearly the case for
frequencies in the range from 2.2 X 10-5 Hz to 4 X 10-3 Hz. On the other hand,

wherever S,(f) remains constant, the curve of f 3 S,(f) as plotted in Fig. 4.4

exhibits a positive slope of three decades per decade. Such a slop6 is

indicated by the dashed line marked "white".

4.4.5 White Noise Artifact in Ewart's Data

Certainly, any contributions to the C(t) that are random and uncorrelated

from sample to sample will add a "white noise floor" to Sj(f), and produce an
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upward slope parallel to the I[ne marked "white". Evidence of such behavior is

strongly indicated in Fig. 4.4. Such uncorrelated perturbations can come from

at least two sourcas:

Type 1 - measurement 3rrors due to additive rardom noise within the
receiver passband, including electronic noise and "sea state noise", and

Type 2 -- the combined effect of all fluctuations in £-(t)that occur at a rate

faster than 0.032 Hz (which is the sampling frequency, i.e., the reciprocal

of 31 s).

Contributions of type 2 can be regarded -s the result of aliasing due to

the 0.032 Hz sampling rate of Ewart's experiment; i.e., 'he higher frequency
fluctuations of e(t) were randomly mapped into the low frequency domain.

Contributions of type 1 are not part of Se(f); they merely contaminate the

measurements of c(t)aid inflate the periodogram estimate of Sj(f).

Ewart concluded that the white noise portion of the peri )dogram estimate

of S,(f) contributed about (2 9 us) 2 to the variance of •(t), whereas the tctal
variance of e(t) was (374 its) 2 for the 8.333 kHz pulse transmissions. This

means that

2 Sj(f) df < (2.2 pts)2 , ',,.2)
0.032 Hz

whereas

2 j Sj(t) df = (374 gs))2 
. (4.3)

(The factor "2" is needed to account for both positive and negative frequencies,

since S,(f) is a two-sided, symmetric, power spectral density of the real valued
random process F£(t).)
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Based upon prior experimental simulations and pre-experiment tests of

his electronic apparatus, Ewart concluded that the "white" contribution to the

variance, (2.2 ils) 2 , was due to type 1 errors. Thus, he concluded that the

upturn in the curve of f3 SE(f) in the right-hand portion of Fig. 4.4 was an artifact

of the measurement limitations (i.e., noise and sampling rate).

4.4.6 An Approximate Formula for Se(f), from Ewart's Data

One might assume, therefore, that 0-3 S(f) actually remains flat beyond
10-3 Hz, at about the value 10-13 (cycles) 2 . The power spectral density of the

time axis perturuations e(t) could then be approximated as

SF(f) 1fl-3  X 10-13 , (4.4)

which gives a result in units of s 2/Hz if the flutter frequency f is expressed in Hz.

Ewart's experiment established Eq. (4.4) only from flutter frequencies of

about 2 X 10-5 Hz to 4 X 10-3 Hz, with extension to 0.032 Hz by virtue of the
"white noise" explanatio'i. To get to the higher flutter froquencies that might
impair replica correlation in a high resolution sonar, where transmissions of up

to tens of seconds might be used to achieve large time-bandwidth products, one

would have to extrapolate Eq. (4.4) upwards by at least a few orders of

magnitude in f.

In the spirit of this extrapolation one might also consider reductions in

range from Ewart's 17.2 km. One way to do this is to assume that each portion

of the propagation path makes equal contribution to the variance, at all

frequencies, i.e., Sj(f) grows linearly with range. In that case, for operation of

an active sonar at range Rson, Eq. (4.4) would generalize to

sJ Xr --- ý xf- X I0-13 (4.5)

[NOTE: This can be no more than a crude approximation. There is reason to

suspect that Se(f) would not shrink exactly linearly with range, because all

portions of the propagation path may not contribute equally to the variance.
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Indeed, as noted in Farmer et aL (1987), the inhomogeneities near the receiver

have greater effect upon the wave-structure function that determines phase

fluctuation statistics. Nevertheless, the approximation of Eq. (4.5) may suffice

down to some inner range limit. Furthermore, one should remember that f-3

dependence cannot extend to arbitrarily large f. It must roll off faster than that

because of the subsonic flutter assumption; see Section 3.1.4.]

It will be recalled from Section 3.1.3 that the equivalent observer velocity

is cy(t), where y(t) is the derivative of •(t), so that Sy(f) = (22tf)2 SF(f). Thus, if

Eq. (4.5) is true then the power spectral density of the equivalent observer

velocity is given by

c2 Sy(f) km (2n x1500m/s)2x _._m Ifl-I x 10-13, (4.6)

with the result having units of (m/s) 2/Hz. To get the root mean square value of

the equivalent observer velocity, one would integrate the right-hand side of
Eq. (4.6) over the appropriate range of flutter frequencies, f, _< f< f2, then

double it (to account for posit;ve and negative frequencies), and finally take the
square root. The result is that the root mean square equivalent observer

velocity is

(c Y(t)rms 17.2 km g f21 x 0.298 cm/s . (4.7)

4.4.7 Application of the Formula Based on Ewart's Data to the
Results of Farmer et a!.

As an example of the application of Eq. (4.7), let us see how well it
predicts the equivalent observer velocity curve of Fig. 4.2 that was obtained
from the Cordova Channel experiment of Farmer et a. (admittedly in more

turbulent water). Since Eq. (4.7) was tailored for active sonar (i.e., for round trip
propagation), the 660 m span of the Cordova Channel experiment must be

divided by 2. The observations of Fig 4.2 were for a period of 11 min (660 s),

so that any fluctuation having a longer period would not have been seen. Thus,
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it is appropriate to set f, as 1/660 = 0.0015 Hz. The selection of the upper limit

is less obvious, but luckily Eq. (4.7) is rather insensitive to it. The sampling rate

(transmissions per second) of Farmer et aL was five samples per second, so a

natural choice for f2 is 5 Hz. The result of calculating Eq. (4.7) with these values

is a root mean square velocity of 0.118 cm/s. In comparison, the root mean

square velocity of the data in Fig. 4.2, from the Cordova Channel experiment,

was 0.06345 cm/s.

This agreement, to within a factor of 2, is truly remarkable. In fact, such

close agreement was probably accidental, given the substantial extrapolations

and approximations involved, and the dependence of the Cordova Channel

propagation statistics upon weather conditions.

4.4.8 Dependence of Ewart's Data upon Tone Center Frequency

All of the analysis just presented was based upon Ewart's power spectral

density data for the 8.333 kHz transmissions. The 4.166 kHz data provided

generally similar results, although there were differences in the spectra above

the Vfis&lI frequency (2.41 X 10-4 Hz) that could have been due to a shift in the

noise floor. The nature of "true" flutter, as it has been defined above in

Section 4.1, is such that the time axis perturbation 8(t) is independent of the

center frequency of the pulse transmission. Ewart stated that the 4.166 kHz and

8.333 kHz data "produced almost identical [E(t)] time series". Indeed, this was

true as regards gross fluctuations that occurred over time spans on the order of

an hour or more. However, when the present author made a transparency from

Ewart's Fig. 8 and overlaid it on his plot so as to align the 4.166 kHz and

8.333 kHz e(t)time series, there were visible discrepancies on the order of at

least ±30 4is. Furthermore, Ewart reported that the overal; variance for the

4.166 kHz data was (384 pis)2 , as compared to (374 4s)2 for the 8.333 kHz

data. Thus, they were only approximately identical.

The noise floor fluctuations discussed above would have been

independent in the two time series; however, Ewart determined that those

fluctuations only inflated the variance of c(t) by (2.2 ptS) 2 , which would have

accounted for a difference variance of 2 X (2.2 ps)2 , i.e., a root mean square
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difference of about 3 js between the e_(t) time series for the two transmitting
frequencies. This is significantly smaller than the 30 Ips discrepancy noted
above. Thus, evidence remains that the fast-rate fluctuations were nonidentical
for the two frequencies. Actually, this discrepant behavior is in conformance
with the fine-scale and microscale theory of inhomogeneities, wherein the size
of the inhomogeneity in comparison to the acoustic wavelength determines the

degree to which it perturbs the propagating wavefront (Ishimaru, 1978).

4.4.9 Later Analysis by Ewart et al.

In a later paper (Ewart et a., 1983), the Cobb Seamount experiment
was discussed again, with an aim toward resolving some of the discrepancies
in amplitude fluctuation statistics between theory and experiment. However,

the authors stated, "We do not discuss the phase (transit time) [i.e., the e(t) data
of the 1971 Cobb Seamount experiment] because predictions on the basis of
the Rytov or Born approximation as in Desaubies and Flatte et al. are very
close to the observations. Ishimaru has shown that the Rytov approximation for
the phase is valid for large range into the region of saturation." Thus, the phase

data of Ewart (1976) stand.

4.5 CHRISTOFF et al.

Christoff et al. (1982) reported a study of acoustic phase stability in
shallow water in St. Andrews Bay, near Panama City, Florida.

4.5.1 Test Environment of Christoff et al.

The tests were made at the eastern end of the remaining west span of the

old Hathaway Bridge (the center span having been removed many years
earlier). The water was nominally 12 m deep, with tidal variations of ±0.6 m.
The transmitter was mounted atop an upright 4 m aluminum beam, whose base
was anchored rigidly by a 3000 lb concrete clump. The receiver was 48 m

away, mounted on a platform of adjustable depth that was locked into position
for each set of measurements. Phase histories were published for the receiver
at 3, 4, and 9 m above the bottom.
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4.5.2 Instrumental Technique of Christoff et al.

A 100 kHz tone burst of 140 Ius duration was transmitted every second.

The direct path pulse arrived cleanly, 250 gs ahead of the bottom-bounced

pulse. In-phase and quadrature components of the first part of the received

pulse were sampled, digitized, and processed by a small computer. The "phase

noise" of the system was measured to be less than 1/100th of a cycle (i.e.,

0.1 g.s). (From their plots it appears that this is a very conservative upper limit.)

Phase was computed by rectangular-to-polar conversion of the complex data.

4.5.3 Experimental Results of Christoff et al.

Christoff et aL published plots of phase history that were recorded over

20-32 min periods in June 1979, at a receiver elevation of 3 m; in November

1980, at 4 m elevation; and again in November 1980, at 9 m elevation. The

author has hand-digitized the last of these; the result appears as Fig. 4.5.
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FIGURE 4.5
100 kHz PHASE VARIATION AT 48 m OVER A 33 min PERIOD,

TAKEN FROM CHRISTOFF et al.
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Their other two phase plots for the lower receiver altitudes showed much less

variation, by an order of magnitude. Indeed, it appears to the present author

that the most significant phase variations in those data (not shown here) were

occasional transient events on the order of 30 s duration, possibly due to

biological entities.

4.5.4 Calculations from the Results of Christoff et al.

The data of Fig. 4.5 can be represented as a time axis perturbation E(t)by

multiplying the ordinates by (10 gs)/360. The variation in e(t) has a span of

about 3 gs, with a standard deviation of 0.698 gs. The equivalent observer
velocity cy(t) can then be computed by taking the derivative of E(t) and

multiplying by c= 1490 m/s. The result is plotted as Fig. 4.6.
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PRESENT AUTHOR FROM THE DATA OF CHRISTOFF et al.
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The plot of Fig. 4.6, which is for 86 kHz transmissioins at 660 m range, is very

comparable to Fig. 4.2, which showed the results of a similar calculation for the

data of Farmer et aL for 100 kHz at 48 m.

The power spectral density SE(f) was calculated from the s(t) data by the

present author using the Welch method, employing Hanning-windowed blocks

of 256 s duration. This resulted in a distortion (flattening) of the spectrum below

0.01 Hz, but those very low frequencies were not of primary interest. The

resulting plot appears below as Fig. 4.7
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FIGURE 4.7
POWER SPECTRAL DENSITY OF TIME PERTURBATIONS

OF A 100 kHz PULSE, TAKEN FROM CHRISTOFF et al. (1982)

The dashed line marked "inverse-cubic formula" is a plot of the

approximate extrapolation formula of Eq. (4.5) that was obtained from Ewart's

data in the manner described above in Section 4.4.6. In that formula the value

of Rson was set at 24 m (= 48/2), since the formula was designed for active sonar

(round trip path). The agreement is fairly good except for a difference in level.
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The actual time perturbations measured by Christoff et aL were about 1/3 of

what the formula predicted (giving a power spectral density about 1/10 as high).

It should be remembered, however, that the other two phase perturbation plots

of Christoff et aL showed fluctuations whose amplitudes were smaller by an

order of magnitude. This would correspond to two orders of magnitude

reduction in the power spectrum of Fig. 4.7.

It is to be expected that the level of the fluctuation spectrum should be

highly var qble, and depends upon environmental conditions. What is

significant is that the shape of the fluctuation spectrum consistently rolls off

approximately as f- 3 , as confirmed by data from experiments with parameters

that differed by a wide margin. Actually, the spectrum in Fig. 4.7 rolls off a bit

faster than f-3 at the higher flutter frequencies, perhaps by as much as f-4.

4.5.7 Conclusions of Christoff et al.

The motivation behind the experiment of Christoff et aL was to determine

whether the fluctuations in the medium would limit the operation of a 100 kHz

synthetic aDerture sonar operating at modest ranges. Since the observed

phase fluctuations were so small, rarely varying by more than 200 in a 2 min

window, they concluded that the fluctuations would be no problem. Similarly,

we can conclude that the fluctuations would not have interfered with replica

correlation, even if the transmitted waveforms had been of 2 min duration.

4.6 BARTELS

Bartels (1989) performed a propagation phase-stability experiment near

the bottom of Lake Travis (at Lake Travis Test Station) in 1988.

4.6.1 Test Environment of Bartels

The transmitter and receiver were both TR-225 transducers. Each was

mounted upright at the center of a heavy, steel 2 ft x 2 ft anchor plate. The

transducers were separated by 110 m, at depths of 30 and 37 m. The lake floor

between the tranducers was known to be free of obstructions. Severe thermal
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gradients are the norm for this lake in July, but they do not usually extend below

15 m; the region near the lake floor at 30 m is thought to be relatively

isothermal. The current was negligible, and the sound path was only a few

inches above the lake floor. All data reported here were collected between

12:30 AM and 2:10 AM on 19 July 1988.

4.6.2 Instrumental Technique and Experimental Results of Bartels

Tone bursts, consisting of 2 ms duration of 40 kHz, were transmitted at a

rate of 1, 2, or 4 times per minute (the rate varied during the data recording

period). The received signal was digitized at a 2 MHz rate and decimated by

one half for computer storage. Windows of 8 ms of data were stored for each

tone burst. Each window was then truncated to a 1.82 ms sub-window that

contained only the direct path arrival. The phase (and amplitude) were

extracted from the 40 kHz complex component of the discrete Fourier transform.

The phase history for the 100 min data collection period is shown in Fig. 4.8.
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40 kHz PHASE VARIATION AT 110 m OVER A 100 min PERIOD,
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4.6.3 Calculations from the Results of Bartels

The data of Fig. 4.8 can be represented as a time axis perturbation E(t)

by multiplying the ordinates by (25 tps)/360 0 . The variation in g(t) is much
greater than for the data of Christoff et aL, but it was recorded over a much

longer interval, and it consisted of much slower processes.

This fact that the flutter is dominated by very low frequencies can also be

seen in the power spectral density S,(f), which is shown in Fig. 4.9. The plotted

spectrum Sj(f) was computed by the Welch method, as described above for
Fig. 4.7. As before, the dashed line marked "inverse-cubic formula" is a plot of

the approximate extrapolation formula of Eq. (4.5). In that formula the value of
Rson was set at 55 m (= 110/2), since the formula was designed for active sonar

(round trip path). As before, the leveling off of the curve at the left end is an

artifact due to the window size.
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OF A 40 kHz PULSE, TAKEN FROM BARTELS (1989)
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The plotted spectrum of Fig. 4.9 obviously falls off more rapidly than f- 3.
Indeed, it falls off as rapidly as f-4 or f-5. This behavior is also indicated by the

relative smoothness of the phase history, compared with that of Christoff et aL

4.6.4 Conclusions of Bartels

The motivation for Bartels' study was to determine the limits that Lake
Travis would impose upon the use of an active sonar with a large time-

bandwidth product. He concluded that a time-bandwidth product of 10,000 was

feasible for short range use. Bartels also recorded amplitude variations, and
looked at the locus traced out in the complex plane by the "phasor" of amplitude

and phase. The amplitude seemed to remain fairly constant while the phase
gradually rotated, but the amplitude shifted when the phase reversed its

direction of rotation. However, this observation is based upon very little data.

4.7 GOUGH AND HAYES

4.7.1 Test Environment and Technique of Gough and Hayes

Gough and Hayes performed a study of propagation path phase stability
in Loch Linnhe, Scotland, using a synthetic aperture sonar as both transmitter

and receiver. The target was a 4 ft diam air-filled steel sphere, held on the

seafloor by blocks of concrete at a distance from the transmitter/receiver of
66 m. The water depth at the target position was 7-10 m, depending upon the

tidal state.

The sonar was held in place by tadt wires. It used an FM wave burst of

0.8 s duration (repeated continuously), sweeping from 15 to 30 kHz, giving a
time-bandwidth product of 12,000. Each (demodulated) echo was divided into

20 ms contiguous "frames" and individual Fourier transforms were taken.

4.7.2 Experimental Results and Conclusions of Gough and Hayes

Phase information was extracted by Gough and Hayes from their

complex data. They plotted phase histograms in their paper, as well as a
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15 min history of phase variation. It showed a monotonic phase variation of

about 700 during that period.

The fact that this was a monostatic sonar test made it unique among

published studies of phase stability. However, it also meant that the signal-to-
noise ratio (in this case signal-to-clutter) could not be made high simply by

increasing the transmitter power. They estimated that their 15 dB signal-to-

noise ratio would give a standard deviation of 100.

From their test they concluded that the medium posed no fundamental

barrier to the operation of their synthetic aperture sonar.

4.8 KENNEDY

Kennedy (1969) reported a propagation experiment conducted 30 miles

south of Bermuda in October 1967.

4.8.1 Test Environment and Instrumental Technique of Kennedy

The transmitter was buoyed 2000 ft above the seafloor, at a depth of

about 9300 ft. The receiving array was 25 miles away, also buoyed from the

seafloor. It consisted of 11 vertically spaced hydrophones spaced from 100 ft to

400 ft above the seafloor, at a depth of about 14,000 ft. Ray trace analysis
indicated that the refracted sound path would be concave downward, with its

uppermost point being only 125 ft below the surface! The transmission

consisted of a 20 ms tone burst at a center frequency of 800 Hz, repeated every

6 min, for an experiment duration of 48 h. The recording equipment was linked
by wire with the transmitter and receiving array, and a stable oscillator was used

to assure phase synchronism.

4.8.2 Experimental Results of Kennedy

The time axis perturbation, F(t), was measured by a zero crossing

method that Kennedy deemed to be very reliable, with an instrumental error
whose standard deviation had been measured to be 66 gs. Kennedy plotted
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the e(t) history fcr his topmost hydrophone in his Fig. 4, covering the entire 48 h

period. It showed long term undulations that he was not interested in, so he

subjected his raw data to a 10 Hz high pass filter. The filtered E(t) plot, shown in

his Fig. 5 (but not shown here), was remarkably similar in appearance to

Ewart's s-(t) history that was depicted in our Fig. 4.3 (which the reader may wish

to consult). However, although the amplitudes of Ewart's c(t) plot and

Kennedy's filtered e(t) plot were similar, the rate of fluctuation in Kennedy's plot

was more rapid. In fact, the entire 88 h plot of Ewart looked like about 15 h of

Kennedy's data. (The more rapid fluctuations in Kennedy's data were also

evident before the high pass filtering, but they were riding on a low frequency

undulation that may have been due to tidal effects.) The c(t) fuctuaticns of i
Kennedy's (filtered) data had a standard deviation that ranged from 596 to

646 lts over the 11 hydrophones (compare to 374 pgs for Ewart's 8 kHz data).

4.8.3 Conclusions Regarding Kennedy's Data

Although Kennedy did provide plots of fluctuation estimated spectra and

autocorrelation functions, the data were deemed to be of little value in

assessing the effects of ocean propagation flutter on high resolution, large time-

bandwidth sonar for the following reasons.

(1) The propagation path was heavily refracted and too long: 25 miles.

(2) The data sampling rate was too low: 0.00277 Hz.

(3) The transmission frequency was too low: 800 Hz.

(4) The source and receiver were not rigidly attached to the seatloor.

(5) The instrumental error was too large: asys[E(t)] = 66 Its.

4.9 SECTION SUMMARY

The experimental studies of phase fluctuations in ocean propagation

agree in several important respects: The power spectral density S,(f) of the

flutter always goes down with increasing frequency, usually as r3 or f-4 , or

even as fast as f-1 on occasion. The time axis perturbation e(t) virtually never

exceeds a few milliseconds. The equivalent observer velocity is typically on the

order of a few millimeters per second. It is the conclusion of several
investigators that phase fluctuations in the medium itself rarely impose any
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severe limits ',ron high resolution sonar as we have defined it; indeed, rarely

does the medium induce enough phase shift to degrade (for example) the

performance of a replica correlator, if the sonar and target remain stationary and

the operating frequency is not too high.

It should be acknowledged that efforts to develop a successful synthetic

aperture sonar have met with greater difficulties than parallel efforts in the

development of synthetic-aperture radar, and the blame has always been

placed upon phase incoherence. Nevertheless, the experimental studies would

seem to indicate that the fault iic- not with the phase fluctuations inherent to the

medium but, rather, to flutter caused by (especially) sonar platform motions.

Since the coherent phase processing that is done in a synthetic aperture sonar

is virtually identical to replica correlation (except that the linear motion of the

platform is taken into account in constructing the replica), it follows that

whatever affects synthetic aperture sonar also affects replica correlation (in a

large time-bandwidth product sonar). Platform motion-induced flutter, including

uncompensated micro-navigational meanderings, would se.ni to be the main

limitation to both techniques.

On the other hand, it would be foolish to st'-se that the medium poses
no limitation whatever to large time-bandwidth product sonar. For transmitted

waveforms of especially long duration at relatively high frequencies, the effect

can be deadly. If C(t) uscillates slowly between limits of ±200 lts, and the sonar
center frequency is 200 kHz, then the phase variation will be ±14,000° if the

transmitted sonar pulse lasts long enough to experience :!. This is enough

phase variation to kill replica correlation several times over.

The point to remember is that the effect of platform motion is probably

even vorse. A ±200 ýts t,me evis deviation corresponds to a platform motion of
about 6 in 'as measured in the target direction, for two-way propagation). The
reader ..,hould ask himself or herself 4he following question: Which Is ilKely to

happen sooner, a variation in propagation time of ±200 4s (which may require

many minutes or even hours), or an accumulated micro-navigational error of

6 in.? For moving platforms, it is hard to escape the conclusio, *,at the latter is

the more likely.
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5. THE EFFECT OF FLUTTER ON AN FM WAVE BURST

Although the effect of flutter upon a few specific types of active sonar

transmissions can be simulated by computer, it is good to have theoretical
results as well. It is, for example, hard to plan and interpret simulation studies

without the aid of theory. This section addresses, from a theoretical point of
view, the effect of flutter upon a replica correlation sonar, for what is perhaps the

most flutter resistant type of transmission: a linear FM waveform.

5.1 AN INTEGRAL FOR CALCULATING THE EFFECT OF FLUTTER

Equation (2.15) is repeated here for convenience:

z(t) = x,,p(;) x(X+t) dX. (5.1)

This equation gives the output of the replica correlation filter for an arbitrary

received signal input x(t). If the received input x(t) is a perfect echo from an
ideal target of unit strength then x(t) = xrcp(t) and the filter output z(t) will be the

ideally compressed pulse p(t), i.e., it will be the autocorrelation function of the

replica as given by Eq. (2.19):

p(t) = (t) =fX'p(x) xrcp(X + t)(dX . (5.2)

However, if the received signal x(t) = Xrcp(t) in Eq. (5.1) is distorted by flutter,

Xmt) irep(t) = Xrcp(t+F(t)), (5.3)

then the output wiil be a correspondingly distorted compressed pulse,
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p~t = Xre(-)® Xrept Xre(, W xrep(k,+t)d . (5.4)

If the received input is a superposition of echoes from many targets, then

the component echoes will be compressed into different versions of p(t),

because of the different times of arrival of the echoes and the time-varying

nature of the random process E(t)that perturbs the time axis. However, it is only

necessary to study the effect of flutter upon an isolated compressed pulse of the

form of Eq. (5.4) to gain a general understanding of how all of the pulses will be

corrupted.

It should be noted that the round trip acoustic path still represents a linear

system even if corrupted by flutter, and the linear superposition principle still

applies. The time axis distortion does prevent it from being an ideal linear-

time-invariant (LTI) system, however. (The replica correlation filter is an LTI

system even when flutter is present; that is why its output can be represented as

a convolution integral of its flutter-corrupted input. The convolution integral

appears in disguised form in Eq. (5.4), because of a change of variables that

was intended to reveal its correlative nature.)

It is difficult to carry the analysis forward from Eq. (5.4) without assuming

a particular type of replica waveform, because of the non-integrable form that

results when one substitutes Xrep(k+t) --- Xep(k+t+F-(k+t)) under the integral.

For that reason, the rest of this section is devoted to the analysis of the FM wave

burst in particular.

5.2 APPLICATION TO AN FM WAVE BURST

The sonar waveform that is most commonly used to obtain a large time-

bandwidth product is the FM wave burst. In particular, let Xrep(t) be of duration

T, starting at instantaneous frequency fo- I Af and ending at frequency
2

I A t'; i.e.,
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xrC(t) j= If I11 eJ2ltiP W) (5.5)

where the quadratically varying phase P(t)is given by

p3(t) = fot + _&f t2  (5.6)
2T

Equation (5.5) is the same as the FM wave burst that was considered above as

Eq. (2.7), with different notation and a scaling factor to make it a normalized

constant amplitude, flat spectrum (CAFS) waveform (see Section 2.3.1). The

reader may also recall from Section 2.1.2 that its bandwidth satisfies the

approximation Be=- Af when the time-bandwidth product AfxT is large.

The fluttered version of Xrep(t)is

iet)= IlAlf Hl~t+E(t)) ej2itP(t+E(t)),(57

which can be written as

irepwt = AfH +0 ei2 np1(t) ei4(t) ,(5.8)

wherein 0(t), the instantaneous phase deviation due to the flutter, is defined as

O(t) = 2t[fo + TAf + 2T Af1I(t). (5.9)

Then, replacing t: -) X+t in Eq. (5.8) and substituting into Eq. (5.4), one gets

i() = 6T~fi' [I(#) ej 2 1t 0(k) HX+t+E()x+t))Cj27EOg(X+t)ej4()Lt)dX. (5.10)

Substitution of T = X•t as the variable of integration yields
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W(t) = Arf I) ej,(,t) ej2n[13(T)-13(-t)l dt. (5.11)

Using Eq. (5.6) and a little algebra one can establish that

[fNt) -f3(t-t)] -03(-t) + .ft' (5.12)

Upon substituting this into Eq. (5.11) and pulling the "t-independent terms out of

the integral, one obtains

ý(t = f (fej21tp I-t)J f~+{) eiO(T) e-j27Eftt d, (5.13)

where ft is defined as

ft= Af. (5.14)T

Equation (5.13) will be developed further in Section 5.4, for the general case.

5.3 CHECKING THE FORMULA FOR THE NO-FLUTTER CASE

It is instructive to test Eq. (5.13) for the case of no flutter, i.e., where C(t) is

identically zero, and 0(t) consequently vanishes (see Eq. (5.9)).

Equation (5.13) then gives an undistorted, compressed pulse p(t):

pWt A~~2t(QJHU H(-) e 2 nfttdr (5.15)

The two rectangle functions (i.e., the H- functions) merely limit the range

of integration to the interval [LI, L,], where 12 and L, are defined as
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SL2 = min It+TE,+T}
jL2= 2 ) (5.16)

= maxt-T,-!i

A null integral results if L1 > 1-2, i.e., if Itl >> T Thus

IpWt = e-~ ( ) e-j2ntft' d'c A,,.2 (5.1 7)

The integration is facilitated by the formula

fb ej2lfdr = (b-a) sinc[(b- a)f] e-jt(b+a)f (5.18)

which is valid for any a and b. In applying it one makes use of the fact that
L2 - = T-Ntt, whereas L2 + L1 = t. These results come directly from the
definitions of Eq. (5.16). Thus, Eq. (5.17) becomes

p(t) = (Afjl) t(, ýe-j2K(-t) (T-itt) sinc[(T- ttI)ft1 eij7tft . (5.19)T 2T

This can be simplified by substituting for ft from Eq. (5.14) and 13(t) from
Eq. (5.6), and making use of the triangle function A(t)(see Eq. (2.9)):

p(t) = A x A(f) sincýA(L Aft] ei2- fot (5.20)

The answer agrees with the autocorrelation function of an FM wave burst
as given by Rihaczek (1969). The central peak has an amplitude of Af (= B.) in
accordance with the filter performance specifications of Table 2.1. The duration
of the pulse is determined almost entirely by the sinc function. For small t the
approximation
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sinc[ -)Aft sinc(Af t) (5.21)

is satisfied, giving a duration of Te= 1.5/Af by Eq. (2.11). This compressed

pulse duration is also in agreement with Table 2.1.

5.4 SIMPLIFYING THE INTEGRAL FOR THE FLUTTERED FM WAVE

The no-flutter case provides a model for attacking the integral of

Eq. (5.13) in the flutter-corrupted case. The first step is to convert the rectangle

functions into a set of integration limits. The first rectangle function, H-[(T-t)/T],

switches "on" whenever the variable of integration t satisfies the inequality

-T+t < !< +t , (5.22)

2 2

and the second one, H[(tr+F-(t))/T], switches "on" whenever

_T < 1;+ e(tC) < 1__ (5.23)
2 2

This latter inequality would fail to define a simple interval were it not for the

subsonic flutter assumption. Because of that assumption (which was made and

defended in Section 3.1.4) the time-perturbing transformation, t---t+E(t), is

monotonic and invertible, so a pair of unique numbers T1 and T2 exist that satisfy

the equations

1+l = _TT_ , (5.25)
2

T22+E (T2) = + . (5.26)
2

These numbers r; and T2 can be used to replace Eq. (5.23) by the following

equivalent inequality (the monotonicity of 1+E(T) makes it equivalent):

"T 1 :5 T8-< T82. (5.27)
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It is therefore possible to combine Eqs. (5.22) and (5.27) into one inequality that
defines the t-interval over which both rectangle functions of Eq. (5.13) will be
switched "on":

El < T; < E2, (5.28)

where L, and L2 are perturbed versions of the numbers L, and L2 that were

defined in Eq. (5.16), i.e.,

f 2=mi~+, 2~ (5.29)

i ,-= max t- ,,lt f
The integral of Eq. (5.13) will vanish unless the condition L2 > L1 is

satisfied. That condition can also be expressed as

max{t ,' I+Z}- min<t,T2-2} < T, (5.30)

i.e.,

"T1 _TT < t < T•2 + T (5.31)

2 2

A rectangle function can be constructed to switch "on" when Eq. (5.31) is

satisfied:

IJ(t) = LH 2+--). (5.32)
Tu + T2 - J

With these preparations complete, it is possible to express the integral of
Eq. (5.13) as

M(t)= -e-j2n3(-tit(t)f ejo(t) e-j2irftT dt . (5.33)
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5.5 BREAKING UP THE INTEGRAL

In Section 5.12 it will be shown that E1 and L2 are very close to their

unperturbed versions, L1 and L2 , that were defined in Eq. (5.16). In anticipation

of that behavior it is useful to break up the integral into three pieces,

fL2d JLl d +JL2 d +J d- , (5.34)

1:1 1l f 2

in which the first and third integrals make small contributions. Then Eq. (5.33)

can be expressed as

•(t) = (4fte-j2nlP(-t) IF(t) [ p (t) + p2(t) ] (5.35)

in which p 1(t) and p2 (t) are the primary and secondary components of the
fluttered autocorrelation. They are defined as follows:

pi(t) = f eJ() e-j21tft dt , (5.36)

and, for the small contributions of the first and third integrals in Eq. (5.34),

p2(= ej0(rt)e-j2tftt dt + eJO('t)e-j27rftt d- . (5.37)
L1  

2

5.6 THE PRIMARY COMPONENT OF THE FLUTTERED PULSE pl(t)

The tedious task of verifying the negligibiliiy of p 2 (t), as compared to

p 1(t), is postponed until Section 5.12. This is done to avoid obfuscation of the
main theme of development, and to permit a small but necessary preliminary
result to be developed first. For the time being, the reader is requested to
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assume that the secondary component p2(t) in Eq. (5.35) can, indeed, be
neglected, so that development theme can continue uninterrupted. Attention

thus shifts to the primary component pM(t).

Using a window function that switches "on" in the domain L, <'T < L 2 ,
where L1 and L2 are as defined in Eq. (5.16), one can express Eq. (5.36) as

pt= Jf n~j, 1] e60(r)e- 2Kftt de. (5.38)

It is helpful to change the variable of integration to t' = 1-t/2. After this is done

the prime notation can be dropped, giving the result

= e-irfttf [[-l-[Jej(t+t/2)e-j2tftt d't . (5.39)

The value of the variable t affects the integral in three different ways:

Effect 1: It affects the window length, T-ItI, of the rectangle function.

Effect 2: It shifts the argument of the 0 function, which, from the definition

given in Eq. (5.9), is

0 (0t) I [+(ýCt)(4L) +(r)(4E) ] 27r fo e(t) . (5.40)

Effect 3: It is a subscript-parameter on the term ft that, from Eq. (5.14), is
defined as

ft= Af. (5.41)
T

It turns out that effect 3 is by far the most significant, especially for small
tvalues. (This simplification is justified in the next section.) Since small values
of t need to be explored to see how the pulse deteriorates in the presence of
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flutter, this is a very useful simplification. In this regard, it is noteworthy that in

the absence of flutter (i.e., where 0 is identically zero) the pl(t) pulse of

Eq. (5.39) is

pi(t) = e-i]Tftt(T -Iti)sinc[(T -Itl)f,] (5.42)

= Te-JinfttA(L)-sinc[A(t)AftT (5.43)

which has a duration of 1.5/Af. (This is in accordance with Eqs. (5.20) and

(5.35), wherein the secondary component vanishes in the absence of flutter.)
When flutter is present the pulse deteriorates, and it is necessary to examine a

wider range of t values to see what happens to it. For example, one might wish

to explore a domain one hundred times as large as the pulse's original

duration:

11:1 < (1-5)x50 =(h)T .(5.44)

5.7 A USEFUL SIMPLIFICATION FOR SMALL t VALUES

In this section it is established that effect 1 and effect 2 can, indeed, be

neglected for sufficiently small t values. Certainly, if t is small enough to satisfy

ItI<<T, then effect 1 can be ignored; i.e., T41t can be replaced by T in the
denominator of the [I function in Eq. (5.39). Indeed, for a sonar whose time-

bandwidth product is very large, the hundredfold-expanded domain that is
defined in Eq. (5.44) would satisfy Itl << T with room to spare, easily justifying

the replacement of T-It! by T. This replacement is harmless because the
integral can be interpreted as a Fourier transform of an almost stationary

random process, for which the window length is not a critical parameter. (if it

were, i.e., if the Fourier spectrum were sensitive to slight alterations in the

window length, then FFT analyzers would not be as popular as they are.)

To confirm that the random process 6j0(t+t/ 2 ) is "almost-stationary", as it
was implied to be in the foregoing paragraph, one can use the following line of
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reasoning: For high resolution sonars the ratio Af/fo typically ranges from 0.1 to

0.3, and it can never exceed unity. For a very large time-bandwidth sonar T

would be on the order of seconds, or (at least) hundreds of milliseconds. The

experimental studies of Section 3 suggest that the time-axis perturbation is not
likely to exceed a millisecond. Thus the second term in the square brackets of

Eq. (5.40) must be less than 0.001, and can be neglected in comparison to the

first term (i.e., the "1"), giving the very accurate approximation

0(t) W =(Tj( f)}]2rfoe(t) . (5.45)

Furthermore, assuming that the ratio Af/fo is between 0.1 to 0.3 and that t varies

over the range -T/2<t<+T/2, it is clear that the number in square brackets

applies a very gradual, ramp-type amplitude modulation, changing the

amplitude from -5% to +5% in the case of Aflfo = 0.1, or from -15% to +15% in
the case of Af/fo = 0.3. This siow amplitude modulation has very little impact;

thus, the random process 0(t) can be treated like a stationary random process

with a slowly time-varying power spectral density.

Effect 2 cannot be dismissed as easily; some preparatory work is

required. The first step is to rewrite Eq. (5.39) in the form

+f0

p(t -= e-jrtftt eJP('t) I['-]eJ(WT)e-j2nrftt dt , (5.46)

where the angle '(T) is defined as

T (T) = 1(t+t/2) - ( (5.47)

By application of Eq. (5.45) and algebraic simplification one obtains the very

accurate approximation

T(t) =--27fo[ I + (-) (--)][e,(+t/2)- cr)] + ( (tAftýc-t+t/2). (5.48)
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(It is a very accurate approximation because Eq. (5.45) is very accurate.) The

angle '(T) vanishes as t goes to zero. Certainly, if t is sufficiently small then

T•(t) will be so small that the approximation eij(")=_ 1 can be made in

Eq. (5.46), which is equivalent to neglecting effect 2. But how small does t

have to be?

To get the answer, one first constructs an upper bound from Eq. (5.48),

based upon the fact that la+birms < lalrms+Iblrns:

JT(¶)Irrs ý 27tf o[1.5]1Et(+t/2)- C(t)lrms + (7- )el(-+t/2)lrmltt. (5.49)

The [1.5] term represents the upper bound for the first bracketed term in

Eq. (5.48), since Af/fo is always less than unity and Jtj•_ T/2.

It can be assumed that the approximation e.i'(@) =_ 1 will be valid if T[rms is

on the order of a two-tenths of a radian, or less. To ensure this condition, one

can require that each of the two terms on the right-hand side of Eq. (5.49) be

less than 0.1; i.e., for the first term,

le(T+t/2)- c(r)jms < 0.1 _- 106, (5.50)
2x 1.5 rfo fo

and, for the second term of Eq. (5.49),

J0.1T ( 1.5){ O.0212Tt < rAfJ8(-)JlJ -(.)j, 11  (5.51)

As it stands, Eq. (5.50) is difficult to apply. However, the quantity e(r+t/2)-E(t)

that appears in it can be regarded as having been produced by a linear system

whose input is e(T) and whose system-transfer function is

H(f) = ej27tW2)f- I . (5.52)

(In this interpretation T is the "time" variable and t is a fixed constant.) The

power spectral density of its output is

88



IH(f)I2SE(f) = (sin[T(t/2)f]} 2 S•(f), (5.53)

and the mean-square value of (,r+t/2)-Q(r) can thus be equated to the
integral of that power spectral density:

EE(,+t/2)-.(,)12] = sin 2[,(t/2)f] SF(f) df. (5.54)

Since sin2x < x2 , this leads to the upper bound

+00

E[Ie(¶+t/2)_~(,t)I2] < _i16f+, (2itf)2 SE(f) df . (5.55)

It will be recalled from Section 3.1.2 that, since the normalized frequency
deviation y is the derivative of the time-axis perturbation E, the power spectral
densities are related by Sy(f)=(2ntf)2S&(f). It follows that the integral in
Eq. (5.55) is simply the mean squart value of y. Using this fact, and taking
square roots to obtain root mean square values, one determines that

JC(t+t/2)-e(,t)Irms -• LltlYrms. (5.56)
4

Thus, to ensure that Eq. (5.50) is satisfied, one needs only to require that
the right-hand side of Eq. (5.56) be less than the right-hand side of Eq. (5.50),
i.e., that

IJtIyrms < 0.0106, (5.57)4 fo

i.e., t rmust be small enough that

0.0424 LCjrmItd < f) =42.4_sL (5.58)
-fOYrms f f Cyrms
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Note that the parameter CYrms in Eq. (5.58) is the root mean square value of the

equivalent observer velocity of the flutter, as discuss3d in Secton 3.1.3. Also,
the quantity in curved braces is the expansion factor of the permitted
"observation window", relative to the unfluttered pulse duration of 1.5/Af. For
example, to allow an observation window with a hundredtold expansion factor,

for a sonar having a 10% bandwidth (i.e., Af/fo = 0.1), Eq. (5.58) would require

that Cyrms be less thai 4.24 cm/s.

Equation (5.58) replaces Eq. (5.50), and in combination with Eq. (5.51)
provides the ecessary assurance that W(c) is small enough to set eJ'F(@) _=- I n
Eq. (5.46). The result of making that approximation is that effects 1 and 2 can

be ignored in Eq. (5.39); i.e.,

pt =e-Jntfttf" n-[ TI eJ•t) e-j27tftT dr . (5.59)

*, -00

To recapitulate, the conditions for validity of this approximation are that
jtj << T, and that Eqs. (5.51) and (5.58) be satisfied. In reality, the size of the
observation window that is allowed by these limits is probably too conservative;
i.e., larger values of t could likely be permitted without severely violating the
approximation of Eq. (5.59).

5.8 PULSE SPREADING AS A PERIODOGRAM

One can express Eq. (5.59) in another way by interpreting the integral as
a Fourier transform and using the definition of ft =-Aft/T as given in Eq. (5.14):

ji 1(t)= ejltAft/T( n-f T I) f4 f- (5.60)
T

In this regard, it should be noted that the phase of p5(t)is not really
important for determining the pulse spreading. It is sufficient zn look at the

power envelope of p1(t),
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"c--) f-- -Aft-
T

However, this still requires a separate computation for each new flutter history

s(t) that is considered. What is needed is a way of predicting the pulse

spreading based upon the statistical characteristics of the flutter.

The first step toward describing the pulse spreading process in statistical

terms is to let (4T(f) denote the unsmoothed, continuous periodogram spectral

estimate (Papoulis, 1984) of the random process eJOP(t), based upon a sample of

length T; i.e.,

(DT(f) - _T . H1 ] jo(t) .1 (5.62)
T I --+f IT

Then Eq. (5.61) can be expressed in terms of the power envelope jFI(tý2 as

I ,(t)lI- T -T(Af L (5.63)

This says that the power envelope of the fluttered and compressed pulse
looks like a single periodogram estimate of the power spectral density of the
random process eJ((t), if one views it through the correspondence f<-4-Aft/T

between the frequency domain and time domain. Using this correspondence,

the duration and shape of the fluttered and compressed pulse can be inferred
from the bandwidth and frequency distribution of the spectrum of eJi4 (t).

This interpretation leads immediately to two questions that will be

addressed in the next two sections:

(1) What is the nature of the random process e.J(t), and what is its

power spectral density?

(2) How accurately is that power spectral density approximated by a
single periodogram estimate?
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5.9 THE POWER SPECTRAL DENSITY OF e00(t)

It will be recalled from the definition given in Eq. (5.9) that 0(t) is the

instantaneous phase deviation (of the received FM wave burst pulse echo) due

to flutter. The time-varying phasor that expresses this phase deviation will be

denoted as q(t); i.e.,

q(t) = eJAOt). (5.64)

It will also be recalled from Eq. (5.45) that the very accurate approximation

0(t) =_ At 2nfo (t) (5.65)

can be made, in which At is defined as

At = I +(TotAf. (5.66)

This factor At can be regarded as a slow growth, linear ramping factor that

ranges from

Amin = I - L(Af/f0 ) (5.67)

2

to

Amax = 1 + -(Af/fo) (5.68)

as t goes from -T/2 to +T/2, giving an average value of unity. Assuming Af/fo

is less than 0.3 (since a larger value is difficult to attain and of questionable

utility), At may, at most, vary from 0.85 to 1.15 (this is the ±15% that was

discussed in Section 5.7). Thus At _= I to a rough approximation, and it follows

that q(t) can be expressed to a similarly rough approximation as

q(t) _= qo(t) = exp[j2tfoE.(t)] , (5.69)

92



where qo(t) is the same as originally defined in Eq. (3.24); i.e., qo(t) is the
phasor that expresses the instantaneous phase deviation, due to flutter, of a

pure tone at frequency f0 . It will also be recalled from Section 3.1.6 that when

the flutter is sufficiently strong to produce a significant effect then, from

Eqs. (3.31) and (3.32), the power spectral density So(f) of qo(t) is well

approximated by

So(f) py (5.70)

where py(.) is the probability density function of y(t), t he normalized frequency

deviation of the flutter.

It follows that the power spectral density Sq(f) of q(t) is roughly

approximated by the right-hand side of Eq. (5.70), in the same sense that the
phasor q(t)is roughly approximated by qo(t). However, it is possible to improve

upon the approximation a bit. From Eq. (5.65) it is clear that the only thing that
prevents Sq(f) from being almost exactly the same as So(f) is the factor At that is

multiplied onto e(t) and, as a consequence, onto y(t) (which is by definition the
derivative of e:(t). Certainly, if A, had constant value (which would be very
nearly true in the case of a high "Q" sonar, i.e., where Af/fo << 1), then one

could account for the effect of this scale factor by replacing py(.) by PAty("), the

probability density of Aty(t), which is

PAty((X) = l5.1

Actually, however, as At varies linearly from Amin to Amax, the ensemble

statistics of At y(t) will become a smeared version of the ensemble statistics of
y(t), giving a mixture probability density y(.-) given by

Amax-Amin jAma . (5.72)
Amin
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This density can be substituted for py(.) to improve the right-hand side of

Eq. (5.70) before it is used to approximate Sq(f), the power spectral density of

00~(t).

l - fo

The reader may wish to verify for himself, or herself, that the mixture
density Pv(') has a unit intearal: i.e., it is a proner density function Furthermore.

if Amin and Amax are reasonably close to one another, the "smearing" that is
described by Eq. (5.72) is exactly that: Sharp points are rounded off and cracks

are filled, but features of the density that are already smooth are not significantly
affected. Actually, in most cases the density py(.) will be smooth enough that

the smearing can be disregarded, i.e., p-y(.) may be replaced by py(.) in

Eq. (5.73) for computational purposes.

5.10 IMPLICATIONS OF THE PERIODOGRAM REPRESENTATION

If the periodogram estimate (IT(f) defined in Eq. (5.62) were an accurate
representation of the power spectral density Sq(f) of eiJ(0, then the power

envelope [1p(t)2 of the fluttered and compressed pulse could be expressed in
terms of Sq(f) through Eq. (5.63). However, because the unsmoothed
periodogram is actually a rather noisy estimate of power spectral density, it

bears further scrutiny.

In general, if ST(f) represents a raw periodogram estimate of a power
spectral density S(f), obtained from a sample of length T, then the expected
value of the estimate is (Papoulis, 1984, with appropriate adjustments for his

notation)

E[ST(f)] = S(f)®Tsinc2 (Tf), (5.74)

and its variance about that mean value has a lower bound

var[STO Žt> JST( f)])92 
.(5.75)
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From Eq. (5.74) one can see that ST(f) is really estimating a smoothed
version of S(f), i.e., the result of convolving S(f) with the function Tsinc 2(Tf).
This means that any sharp spectral lines in the spectrum S(f) (including any
spike at the origin that represents concentration of energy at very low
frequencies) will be smeared to a bandwidth of about 1/2T. However, if T is
large the smoothing effect will be rather modest, and negligible under most
circumstances. Equation (5.75) has more serious consequences. It implies that
the root mean square fluctuations in the estimate are as large as the quantity
being estimated; i.e., the estimate's "noise" is as large as its "signal". (For that
reason, spectrum analysts never use the periodogram estimate without
applying some additional smoothing.)

In our particular application the periodogram estimate (DT(f) is not a
deliberate attempt to do good spectral analysis; it is accidental. It presents itself
as an uninvited guest, appearing as the power envelope $,1(t)12 of the fluttered
and compressed FM wave burst. From Eq. (5.63) the mean power envelope
must be

E[$1(12] = TE[E( f)]_ , (5.76)
T

which, by Eq. (5.74) and the fact that DT(f) is the periodogram estimate of Sq(f),
may be expressed as

E[I pl(t) 12] =- T [,S(f)®0T sinc 2(Tf)]__ f~ .f (5.77)
T

This can be further approximated by

E[ h,(t)12] = T[ Sq(f)f (5.78)
T

if T is sufficiently large, i.e., if the aperture width 1/2T is small in comparison to
the spectral features of Sq(f), so that the smoothing effect of convolution by
Tsinc 2(Tf)is negligible. Indeed, if one uses the approximation of Eq. (5.73) for
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Sq(f), the smearing of the probability density in Eq. (5.72) should ensure a

smooth spectrum unless T is unusually small. With the approximation of

Eq. (5.73), Eq. (5.78) becomes

T

i.e.,

Eýlft)I21 (5.80)

The "noisiness" of the power envelope is revealed in the fact that

statistical variance of the power envelope is bounded from below by

var[jý,(t)l2] Ž_ {EiT (t)21)}2 , (5.81)

which follows from Eqs. (5.63) and (5.75). In effect, Eq. (5.80) tells us what the
mean value of the power envelope looks like, but Eq. (5.81) warns us that the
root mean square variations are at least as large as that mean value.

Alternatively, Eq. (5.80) can also be expressed in terms of the root mean

square envelope of the fluttered and compressed pulse, by taking the square

root:

Ipi(t)Irms T I(Af-L (5.82)

Since Eq. (5.80) is one of the most important results of this section, it is

appropriate to review some of its aspects, as follows.

(1) The formula is valid for flutter that is strong enough to cause

significant phase deviations at the frequency of operation;

specifically, the formula is valid if I foe(t)A> I most of the time. The

formula does not give the correct answer for vanishingly small

flutter.
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(2) Because of the slow growth, linear ramping factor At in Eq. (5.65),

neither of the random processes 0(t)and eJM(t) is truly stationary,

so that the use of a power spectral density Sq(f) is only valid in an

approximate sense. However, since ¢MW(t) is only seen within an

observation window of duration T, its lack of stationarity does not

have the opportunity to manifest itself in a dramatic way; i.e., it

looks pretty stationary.

(3) The formula is valid within a range of t values that obey Eqs. (5.58)

and (5.51).

(4) The formula depends only upon the point statistics of the random

process y(t), not upon its temporal statistics. However, it does

depend upon the temporal characteristics of the time axis

perturbation process c(t), because y(t) is the time derivative of

(5) In most cases the density py(.) will be smooth enough that its
"smearing" can be disregarded, i.e., Py(.) may be replaced by

py(-) in Eq. (5.80) for computational purposes.

(6) The expected value of the power envelope, given by Eq. (5.80),

retains all of the energy of the unfluttered pulse.

Assertion (6) can be verified by computing the energy in Eq. (5.80):

E --]dt =f PY T) IAf (5.83)

where the last step was achieved by simplifying the variable of integration and

exploiting the fact that the integral of a probability density function has unit

value. (It makes no difference whether p-y(.) or py(.) is used.) This computed

energy, T2 /Af, is the same as the energy of the unfluttered pulse pl(t), where

pI(t) is as given in Eq. (5.42):
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J '(tf 2 dt = T 2 fJ (A) sinc[(Afft)dA( t dt (5.84)

-Tf SinC2(Aft)dt =-Ti (5.85)
Af

(Note that Eq. (5.85) was obtained by approximating A(t/T)= 1, which is

certainly valid in the small central region where the unfluttered, compressed
pulse has non-vanishing amplitude.)

5.11 THE FLUTTERED AND COMPRESSED PULSE DURATION

The duration (denoted dur) of the root mean square envelope of the
flutter-corrupted pulse can be computed by plugging Eq. (5.82) into the
definition of Eq (2.8), giving the result

i T - t Af t 2 dt

dur l(t)lrms) -- , (5.86)

Jf ii,( f )IL dt

which can be simplified by changing the viriable of integration to
CC= -(Af/fo)(t/T), giving the result

dur(Iwirt)Is) ()T(5.87)

If it is assumed that the density py(.) is already so smooth that P-y(.) is
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approximately equal to py(.), then the duration is

Ifo0-lT
dur (_it), (5.88)

which, in light of Eq. (3.35), means that

dur($j(t)Irm) TBjo, (5.89)
Af

where Bo is the fluttered tone bandwidth, i.e., it is the bandwidth of a pure tone

at frequency fo after it has been corrupted by flutter. (Recall that the fluttered

tone bandwidth, Bjo, was one of several measures of flutter magnitude that were

discussed in Section 3.)

The rather simple result expressed by Eq. (5.82) is not too surprising. It
has already been pointed out, in the discussion following Eq. (5.70), that Sq(f) is

roughly the same as So(f). (Recall that Sq(f) is the spectrum of the flutter-

deviation phasor q(t)that is impressed upon the FM wave burst, whereas So(f)

is th. spectrum of the flitter-deviation phasor qn(t) that would be impressed

upon a pure tone at frequency fo.) It then follows from Eq. (5.78) that the

expected value of the power envelope has the shape of Sq(f), with its frequency

scale converted into a time scale by the substitution f--*-Aft/T, i.e-, by

multiplying the frequency values by T/Af to get time va!ues. Therefore, if the

fluttered tone spectrum Sq(f) exhibits a bandwidth Bio, then the root mean

square envelope of the fluttered and compressed pulse j' 1(t) should exhibit a

pulse duration equal to (T/Af)x BTo, which is in agreement with Eq. (5.89).

In view of Eq. (5.80), the shape of the spread pulse will depend upon the

nature of the statistics of y(t). In particular, if y(t) has Gaussian statistics then

1will have a Gaussian shape; if y(t) is uniformly distributed over an

interval then will have a rectangular shape; and if y(t) is sinusoidal
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then 1ýt0m will display two tall cusps with a trough of reduced level between

them (see Section 3.1.6). Furthermore, it will be recalled from Eq. (3.47) of

Section 3.1.6 that

BTo= 2 x ( f-2, f-, or "if-) Yrms fo , (5.90)

where F2, C3, or'-•- is selected depending upon whether the flutter y(t) is

Gaussian, uniformly distributed, or sinusoidal. It follows from Eq. (5.89) that

durdoplt~m.rm) =N (.T1I 2 x 2 f3 rft1 rsf (5.91)

Although this result looks fairly powerful as it stands, with a few

adjustments it can be made even more useful and general. The first adjustment

is mainly for simplicity: Since f-2, f-3, and 0/r are so similar, it is well within the

scope of the approximation to compromise upon the middie one, V-3, for general

use. Thus, Eq. (5.91) becomes

d ur(Ip(t)I) (])2 x N3y.,mfo) (5.92)

The second adjustment is more subtle. It addresses the case where the

duration T of the FM wave burst is so brief that the sample statistics of the

random process y(t) during that interval do not accurately reflect the population

statistics; i.e., they give a distorted view of the behavior of y(t) that would be

seen in a much larger interval. This is best illustrated with a simple example:

Suppose that the bandwidth Af of the FM wave is much less than the center
frequency fo, so that the instantaneous phase deviation, as defined in Eq. (5.9),

is very accurately approximated by

0 (t) 27t 2 fo E(t) . (5.93)

(In Section 5.9 this was a rough approximation, but it is very accurate for this

example.) Suppose, further, that y(t) has wide excursions but varies quite

slowly (this will be the case if the flutter is due to sonar platform meandering that
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has substantial velocity but small acceleration). Then y(t) will be essentially

constant during the interv,-t of an FM wave burst whose duration T is very short

(e.g., a few milliseco,'',):

y(t) _= y(O) forItj< T/2, (5.94)

and the time axis perturbation £(t), which is by definition the derivative of y(t),
will be approximately linear,

M(t) _=() + y(O) t, (5.95)

which upon substitution into Eq. (5.93) gives

0(t) 2ntfoe(O) + 27ty(O)fot. (5.96)

This simplifies Eq. (5.59) to

t() =- e-Jnftt ej21cfoc(O)J [ {rJ]ej2ny(O)foT e-j2nft d' , (5.97)

so that

$ (tl T/ e-j2nftTr dx , (5.98)

where ft defined as a shifted version of the parameter ft of Eq. (5.14):

- t Af - y(0) fo. (5,99)
T

As applied to Eq. (5.97), the integral formula of Eq. (5.18) gives the result

$Iii -= I-sinc(T,)i r Tsinc(Af0t + -T.Y(O) fo (5.100)
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which means that the original unfluttered duration, 1.5/Af. is actually preserved

(approximately), but the pulse has a random time displacement, i.e., a "jitter",

equal to

dt -T-y(0)fo . (5.101)
Af

The fact that the pulse is not elongated would seem to contradict the

pulse spreading formulas of Eqs. (5.80) and (5.92), but it really does not.

Indeed, from Eq. (5.100) it follows that

{(t)12] = 2 ETsinc"IT f0 f[t+ Y(O), (5.102)I T foI

which can be expressed in terms of py(.), the probability density function of

y(t), as

E'[i (t)W21 T2  smc 2ITfo I ýt+] py(y) d. (5.103)

Then, making use of the fact that sinc 2 (Kc)= K-1 5(() for large K, where 5(.) is
Dirac's delta function, one sees that

Erp'(t)I2] JfT f 6 Aft + ()p y(c) d(x

Eýfo \Tfol

T IPy Lf..I.r (5.104)

which is the same as Eq. (5.80), except that Eq. (5.104) does not use the
smeared probability density py(.). However, for our example it was assumed

that the center frequency fo was much larger than the bandwidth Af, which
means that the linear ramping factor AN defined in Eq. (5.66) varies over a small
range, and the smeared density py(.) defined in Eq. (5.72) is essentially the
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same as py(.). Thus, Eq. (5,104) really is the same as Eq. (5.80), and there is
no contradiction between the no-spreading ("jitter only") result of Eq. (5.101)

and the pulse duration spreading results of Eq. (5.80) and, consequently,

Eq. (5.92). Although a single pulse does not exhibit significant spreading, it

does exhibit pulse-to-pulse "jitter", and Eq. (5.92) predicts the root mean

square envelope that must be used to cover the entire ensemble of randomly

jittered pulses.

The lesson of this short burst example is that Eqs. (5.80) and (5.92)

describe average behavior over an ensemble of pulses, but for short duration

transmissions they cannot be relied upon to predict single-pulse spreading.

Still, if the FM wave burst lasts long enough that the flutter process y(t) does

exercise the full range of its population statistics, then Eqs. (5.80) and (5.92) will

adequately predict single-pulse spreading.

There is a subtle way to adjust Eqs. (5.80) and (5.92) to make them

predict single-pulse duration in both cases. (In most sonar applications single-

pulse spreading would be the most important consequence of flutter, and pulse-

to-pulse jitter would be of '3sser importance.) One simply writes

l~(t)!smrnoothed, -iT Af (5.105)
single pulse fo f

in place of Eq. (5.80), and

dur (I p (t) 1) soothed. (T x( 2×•3 y TT () ) (5.106)
single pulse

in place of Eq. (5.92). In the right-hand sides of these expressions the

superscript "iT)" designates that sample statistics for the interval of the FM

wave burst are to be used rather than population statistics; e.g., y(T refers to

the sample standard deviation, i.e., the root mean square average of the flutter

process y(t) during the specific interval Itt•<T/2 after subtracting the mean

value over that same interval. Assuming the random process y(t)is stationary

(and ergodic), yT converges to Yrms as T becomes infinite; i.e., y =-v) .
However, for finite T the value of y(, may differ from Yr.,. In particular, for a

103



very small T the interval will be so short that y(t) will be almost constant over the

interval, so that the value of y will be small.

The substitution of y(T) for Yrms can be defenc,. Id by the following

argument: Since y(t) is observed only during an interval of length T (when a
single pulse is observed), it is possible to imagine that y(t) is a sample of a
mythical random process whose population statistics match the observed

sample statistics, including the sample mean and sample standard deviation

a(T) The left-hand sides of Eqs. (5.105) and (5.106) are then based upon
averages over that mythical ensemble, and are marked with the subscripted
notation smoothed, single pulse to emphasize that they do not describe average
behavior over the true ensemble of fluttered pulses, in the sense that they do
not account for pulse-to-pulse jitter. However, if T is long enough that the

distinction between population statistics and sample statistics evaporates, i.e,
so that y ('0 is certain to be close to Yrms, then Eqs. (5.105) and (5.106) become
equivalent to Eqs. (5.80) and (5.92). For that case, the single-pulse spreading
(which could also be loosely described as "within-the-pulse jitter") is so severe

that it covers the full span of pulse-to-pulse jitter.

The reader will recall that Eq. (5.92) was our first adjustment to Eq. (5.91).
Equation (5.106) constitutes our second adjustment. The third adjustment

relates to the fact that the minimum duration is 1.5/Af no matter how small the
flutter is. (See the discussion following Eq. (5.21) for the no-flutter case.)

Although this would seem to violate Eq. (5.106), there is really no contradiction
because the discussion following Eq. (5.82) acknowledged that the pulse
spreading formulas are only valid when there is significant flutter. When the

formula of Eq. (5.106) gives a value less than 1.5/Af it should not be believed.
There is 7 simple way to "fix" this defect without seriously degrading the level of

approximation: One rr erely adds 1.5/Af to the right-hand side of Eq. (5.106).
(This trick is somewhat analogous to the heuristic development of "Carson's

Rule" for estimating the bandwidth of an FM transmission; see, for example,

Stark and Tuteur (1979).) The result of this third and final adjustment is

d u r÷sm(th ('!5)I +(2x y gl)Tf)] . (5.107)
single pulseo
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The quantity in square brackets represents the pulse elongation factor

due to the flutter. In terms of cyGT, which expresses the strength of the flutter in
terms of the standard deviation (about the sample mean) of the equivalent
observer velocity during the FM wave burst's duration, the duration of the

fluttered and compressed pulse is

dur r (tW1) smoothed, (--+(Tf0) 6 " (5.108)
single pulse Af 650 m/s

For exarmple, for a 200 kHz sonar (= fo) with a transmitted duration T equal to
1 s, the pulse elongation factor would be about 16.4 for flutter having a cy

value of 5 cm/s.

If the flutter is strongly dominated by low frequoncy components, then

y(t) = y(O) +y(0)t forltl< T/2 (5.109)

if T is small enough. Since y(t) is then uniformly distributed over the interval
[y(O)-y(O)T/2, y(0)+y(0)T/2], whose length is ,(O)T, it follows that the
standard deviation about the sample mean is 5(0)T/ f12, so that with some
algebraic manipulations Eq. (5.108) can be replaced by

d u r W1)fsmoohe, - (,5) 1 + 1.33 (2 )(c)(oI, (5.110)
single pulse f X

where g is the acceleration of gravity and X is the wavelength (in water) at the
center frequency fo. The last factor in Eq. (5.110) is the equivalent observer
acceleration at time zero, measured in "gee" units (equivalent observer
acceleration was briefly discussed in Section 3.1.3). The next to last factor has
an amusing interpretation: It is the distance, measured in wavelengths, that a
body would drop (in free fall) during the duration T of the FM wave burst.

This formula, which is valid for small T in the presence of flutter that has
low frequency dominance, reveals that the pulse elongation has a quadratic
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dependence upon T for small T. This behavior was not particularly evident from

Eq. (5.108), and was certainly not evident in Eq. (5.92). It makes sense, though,
and shows that the effect of flutter disappears when the duration drops below a

threshold value. From Eq. (5.110) the threshold value of T for flutter is given (in

seconds) approximately by

Tihresh -= 0.4 x .•-wavelength in meters (5.111)

•/ equivalent observer

Vacceleration in "gee" units

5.12 NEGLIGIBILITY OF THE SECONDARY COMPONENT p2 (t)

Much of the foregoing discussion has been predicated on the negligibility

of the secondary component p 2 (t)of Eq. (5.37) in comparison with the primary

component p 1(t). The first step in verifying this negligibility is to examine the

constants ti and t2 that were defined through Eqs. (5.25) and (5.26). In

particular, Eq. (5.26) can be written as

T2 = +I - C (T2) • (5.112)
2

From the discussions of Sections 3 and 4 it can be concluded that the time axis

perturbation £(t) is typically on the order of a few hundred microseconds, and
would virtually never exceed a few milliseconds. For large time-bandwidth

product sonars T will likely be at least a few hundred milliseconds. It follows

that IE(tj<<T/2 and, from Eq. (5.112), that T2 will be very close to T/2, i.e.,

within a few milliseconds, so close, in fact, that the approximation

E(T2) =(T/2) + (T2 -T/2)W(T/2) (5.113)

=(T/2) + (t2 -T/2)y(T/2) (5.114)

is extremely accurate. The reason is that the flutter is predominantly of such low

frequency, and it certainly fits a straight line approximation for a few
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milliseconds. Substituting Eq. (5.114) for c11 2 ) in Eq. (5.112) and solving for T 2

gives the extremely accurate approximation

T e(T/2)
T2 -+ 

. (5.115)
2 1 -y(T/2)

When the same approach is followed with Eq. (5.25), a corresponding result for
T1 is obtained:

T E(-T/2)
1 = _- + E(5.116)

2 1 -y(-T'/2)

Equations (5.115) and (5.116) can be used in Eq. (5.29) to express the
definitions of L1 and L2 in terms of very accurate approximations:

S min e(T/2) +
I' 1-y(T/2) ) 2 (5.117)

L, maxlt s(-T/2) -T
I 1-y(-T/2ý) -2J

The definitions of the unperturbed values L1 and L2 were given in
Eq. (5.16), which can be rewritten as

L2 =min~t, 0) + T

2) (5.118)

L I max{t,0)-2

It follows that

I E2 - L21 < E(T/2) [(5.119)
1- y(T/2)

and

107



ILI 1 -y(-T/2) (5.120)I~~~ 1-, I-y(-T/2)1

Because of the subsonic flutter assumption of Section 3.14, it must be

true that IyI<< 1, so that the denominators of both Eqs. (5.119) and (5.120) have

nearly unit value. The numerators are very small, assuming the time axis

perturbation e(t) is never larger than a few milliseconds (as suggested by the

results of Sections 3 and 4). Thus, in both cases the quantities on the right are

very small, and the assertion that was made in Section 5.5 is fully justified,

namely, that L1 --- LI and L2 -L 2 .

Also, it follows from the definition of p2 (t) given in Eq. (5.37) that

fL1 L2I 2(ot-< + eJ(e-afldt (5.121)

or, since the integrands have unit magnitude,

li~2(t)I •5 1EI- L 1 + IE2 -L21 .(5.122)

The combination of Eq. (5.122) with Eqs. (5.119) and (5.120) then gives the

result

JP2(t)I < e(-T/2) + e(T/2)
1 -y(-T/2) I 1- y(T/2)

As was mentioned following Eq. (5.120), the subsonic flutter assumption implies

that Jy<< 1, so that both denominators have nearly unit value and the

approximate inequality can be simplified to

IJ2(t)I Z Is(-T/2)I + 16(T/2)1 . (5.124)

Using the algebraic inequality (a+b)2 < 2a2 + 2b2 , it then follows that
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!= 21e(-T/2)j2 + 21e(T/2)12 . (5.125)

With this bound for the power of the secondary component p 2(t) it is

possible to demonstrate its weakness as compared to the primary component

p 1(t), in the central zone where the primary component is strong, i.e., within the

interval over which the pulse has been spread by the effects of flutter. Recall

that the expected energy of the primary component was computed in Eq. (5.83)

to be T2/Af, and that its duration was computed to be 2"t•(fO/Af)Tyrms (see

Eq. (5.92)). Thus, the effective power of the primary component is

(pi(t))power -= T 2 /Af - T (5.126)
2i3-(fo/Af)Tyrms 2foyrmsf .' (2

If the power of the secondary component p2(t) is less that 1% of the
effective power of the primary component p1(t), then we might say that the
secondary component is negligible. This concition will certainly be met if the
upper bound given in Eq. (5.125) is less than 1/100th of the value given by
Eq. (5.126):

21c(-T/2)12 + 21e(T/2)12 < 0.01T (5.127)
2foyrmsff

With a rearrangement of terms, this criterion for negligibility of the secondary

component can be expressed as

(foYrmS)(Fe(-T/2)12 + i\/j < 1.44 x 10-3. (5.128)\ ~T/

As an example of the application of this criterion, consider a sonar with

fo=200 kHz and T= I s, in a flutter environment in which the maximum time
axis perturbation is expected to be E(t)=3 ms, and the root mean square

equivalent observer velocity of the flutter is limited to 10 cm/s, so that

Yrms = 10cm/s/1500 m/s = 6.67x 105 . Then the left-hand side of Eq. (5.128)
evaluates to 2.4 x 1 0 -4. which meets the criterion easily.
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The reader will recall that the secondary component and the primary

component were added to give the flutter-corrupted, compressed pulse. as

specified by Eq. (5.35), whith is repeated here for convenience:

5(t) = (Af)e-j21c13(-t)I,(t) [ Fl(t) + p2(t) 3 (5.129)

If the negligibility of the secondary component is assured, then

(t)= (Af) e-j2 7rt 3(-t) le(t) p,(t) (5.130)

5.13 PROCESSING GAIN

In terms of the sample standard deviation value of equivalent observer

velocity cy(T) (as sampled during the interval T of the sonar waveform) the

pulse duration after pulse-compression filtering is, by Eq. (5.108),

dur ai(t)IDsmoe, ()ff5[1 + (Tfo)(6CO . (5.131)
single pulse '650 m/s

In terms of the ratio of durations before and after filtering, the processing

gain yielded by the pulse-compression operation (see Section 2.3.4) is
5 log 10(durbeforeduraftr). Since the duration was originally T, it follows that

Prec.TGain ] 5loglo - 5 log o(1.5), (5.132)

1 +(Tfo)(6 ?

which may also be expressed as

Proc. Gain _ 5 loglo0 (AfT) 0.88dB, (5.133)
1+

KT
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where the the time-bandwidth product "ceiling value" KT is defined as

KT 65-l (5.134)
QcyMD

and the "Q" of the sonar is

Q fO (5.135)
Af

For large T the value of KT converges to K.~, defined as

K.= 6~50 lns~ (5.136)
Q CYrms

If KT were a constant, the dependence of processing gain upon time-
bandwidth would be very easy to describe: The processing gain would then
increase at a rate of 5 dB per decade of time-bandwidth product, approaching a
"knee" at KT, whereupon it would level off, gaining only 1.5 dB beyond the
value it had at KT. Such behavior is depicted in Fig. 5.1. The value
KT = 21,666 is merely an example for Q = 3, taking the root mean square
value of equivalent observer velocity to be cyrms = 1 cm/s, and assuming that T
is large enough that KT =K 0..

In a real sonar design exercise one can assume that the time-bandwidth
product would be varied by increasing T, after the center frequency fo and the
bandwidth Af had been selected (thereby fixing the value of Q3. It follows that
KT Will generally converge downward to K~,with increasing T, because the
sample standard deviation y(T) will generally converge upward to y()= Y(1 Y C
(it is possible for y.l' to be greater than than Yrms if the sonar waveform interval
happens to catch the flutter process y(t) in a violent maneuver, e.g., at a point of
discontinuity. An example of this will be presented in Section 7, using a flutter
process F_(t) that has sharp-pointed "cusps", at which y(t)= c(t) exhibits
discontinuities. However, such behavior is of a singular or pathological nature,
and does not alter the truth of the statement that KT Will generally converge
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FIGURE 5.1
PROCESSING GAIN FOR THE FM WAVE BURST,

AS A FUNCTION OF TIME-BANDWIDTH PRODUCT,
FOR A CONSTANT CUTOFF VALUE KT = 21,666

downward to K..) Thus, as T and the time-bandwidth product go up, the cutoff
value KT will move downward, finally coming to rest at the value K. as given

by Eq. (5.136).

In most circumstances that can be imagined (barring flutter with
extremely intense low frequency components and very large Q), the value of KT
will have settled out at K. long before the time-bandwidth product rises to meet
it. It follows that Fig. 5.1 can be used as a prototype plot of the dependence of
processing gain upon time-bandwidth product, for an FM wave burst, putting the
dashed line (and knee) at K. as computed by Eq. (5.136). More importantly, it
follows that

[Proc. Gainlmax _ 5 logiog0 K - 0.88dB. (5.137)
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Figure 5.2 plots this approximate upper limit as a function of flutter
magnitude, as expressed by the root mean square equivalent observer velocity,
for values of Q = 3 and Q = 10. The flutter strength shown in the figure spans a
range from 0.01 cm/s to 100 cm/s, which covers the flutter environments likely to
be encountered in practice. The lower limit of 0.01 cm/s is representative of
medium-induced flutter in a quiet environment, as suggested by the results of
Section 4, and the upper limit of 100 cm/s represents a flutter due to platform
meander that has a root mean square value of 70.7 cm/s in the direction of
sonar interrogation. (Recall from Section 3.2.2 that variance contributed to
equivalent observer velocity is twice that of the sonar platform velocity.) This is
a rather extreme amount of platform meandering, enough to cover most
conceivable scenarios.
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FIGURE 5.2
APPROXIMATE MAXIMUM PROCESSING GAIN AS A FUNCTION OF

FLUTTER STRENGTH, FOR THE FM WAVE BURST
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5.14 SECTION SUMMARY

The matt amatical developments of this section are not simple (especially

Section 5.12), but they have led to some simple results. For example, it was

determined that the shape of the fluttered and compressed pulse tends to mimic

the shape of the probability density function of the flutter process y(t). An

equivalent statement is that it must mimic the shape of the probability density

function the equivalent observer velocity cy(t).

The formulas and graphs that were developed should have practical

value for predicting the benefit that can be gained by application of a pulse-

compression filter. An example will illustrate: Suppose a sonar has a center

frequency (fo) of 200 kHz, a bandwidth (At) of 50 kHz, and a transmitted

waveform duration (T) of 1 s. In the absence of flutter the pulse compression

(i.e., replica correlation) filter will yield a processing gain of 22.6 dB, according

to Eq. (5.132). However, suppose the sonar platform is moving and has a

random meander (or, in the case of a Doppler compensated sonar, suppose

that there are residual micro-navigational errors), to the extent that the

equivalent observer velocity of the flutter exhibits a sample standard deviation

of 2 cm/s during the 1 s duration of the waveform. Then the pulse compression

filter will only yield a processing gain of 18.3 dB, according to Eq. (5.132).

Finally, the most important result developed in this section is so subtle

that it is easily overlooked: When flutter is introduced, it does not destroy the

energy of the compressed pulse p(t)in the case of an FM wave burst, nor does

it scatter its energy throughout the entire duration of p(t) (which is an interval of

length 2T). Instead, the flutter merely elongates the central pulse, to a degree

that is proportional to the strength of the flutter (in particular, to the strength of

y(t).

It is really not so surprising that the pulse energy is preserved, since that

is merely a consequence of the fact that Xrcp(t) is a CAFS waveform. For such a

waveform the replica correlation filter is a bandpass filter with unity gain (albeit

with a special phase response), which must preserve the energy of the received

signal. (Energy could be lost if the flutter were so severe that it splattered the
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input spectrum beyond the bandpass limits, but that is as an extreme,

pathological circumstance.) More surprising is the fact that all of the energy of

the compressed pulse remains clustered at the center, with merely an
elongation due to the flutter. This is a property that seems to be unique to the
FM waveform (including waveforms with very FM-like behavior, i.e., waveforms

having slow, steady variation in frequency).

The subject of FM waveform transmissions is addressed again in later

sections of this report. Results of computer simulations are described in
Section 7, and Section 8 provides a handy review of the theory (including
some simple results that are extend the developments of this section).
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6. EFFECT OF FLUTTER ON A HOPCODE BURST

It will be recalled that for an arbitrary transmitted waveform the fluttered

and compressed pulse is

+) 00 - (6.1)

where

&rep(t) = Xrep(t + e(t)). (6.2)

(The formula for F(t)in Eq. (6.1) was obtained from Eq. (5.2) by substituting

X = t-t.) In this section the effect of flutter will be explored for the case in which

Xrep(t) is a frequency hop-encoded waveform, which includes the stepped-linear

FM wave burst as a special case.

(If the reader has already been overburdened by the mathematical

complexities of Section 5, he or she may wish to scan the developments of this

section superficially, and then read Sections 6.6 - 6.8.)

6.1 THE HOPCODE WAVEFORM

The formula

N'

xrep(t) = N ej21Efot I Xn(t), (6.3)

where N=2N'-I, describes a continuous phase, frequency-hopped

waveform, in which xn(t) the nth "chip" is actually q tone burst of duration T/N,

defined as
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X n(t) t l-~ - tn ]ej2ntft (6.4)

•T/N!

where tn defines the center point of the nth chip,

tn = in, (6.5)
N

and fn defines its baseband frequency:

f.= N-- (n) , (6.6)
T

forn = -N',... -1, 0, 1,..., N', and

T = duration of entire waveform,

N = 2N'-1 = number of chips (an odd integer),

fo = center frequency, and

Q(n) = an arbitrary mapping of the integers

(-N',. - • -1, 0, 1,... , N'} onto themselves.

The assumption that the waveform contains an odd number of chips is

made for mathematical convenience, with little loss in generality. The integer

mapping Q(n) is the "code" of the hopcode waveform. If this mapping is the

trivial one Q(n)= n, then xrep(t) will simply be a stepwise-linear FM wave burst.

In general, however, Q(n) is used to scramble the order of frequencies.

As a result of the switching function H(.) in Eq. (6.4), the nth chip in the

summation of Eq. (6.3) is zero outside of the interval of duration T/N, bounded

by the points

t = tn +T (6.7)
2N

The chip intervals are contiguous, without overlap. Upon substitution of the

interval boundary values of Eq. (6.7) and the frequencies of Eq. (6.6) into the
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definition of xn(t)given in Eq. (6.4), one can easily verify that the phase of each

xn(t) is zero on those boundaries; thus, the aggregate waveform xr(t) has

continuous phase. The frequency of the nth chip, including the effect of the

carrier, is

Fn = fo+fn. (6.8)

Since Q(n) maps a sequence of integers onto itself, it follows that the
tonal frequencies blanket a total frequency range of [(N-I)N/T] Hz. However,

each chip is r tone burst of duration T/N, whose bandwidth is on the order of

N/T Hz. As a result, the highest and lowest frequency chips at the ends of the

spectrum should each contribute an additional half-bandwidth equal to

0.5 x N/T Hz, so the waveform actually blankets a total frequency range of

Af- N' (6.9)
T

If N is large, then the spectrum of x(t) will be quite flat over this band, so

Be- Af and the time-bandwidth product is

2
BeT =- AfT = N. (6.10)

The factor N/T='A-/T that appears as a scaling factor in Eq. (6.3) thus makes

x(t) a normalized CAFS signal, in conformance with Eq. (2.27).

6.2 THE FLUTTERED AND COMPRESSED PULSE

Combining the replica correlation and flutter effect formulas of Eqs. (6.1)

and (6.2), one obtains

X= f rp(t-t) Xr p(T + E_(T)) dT. (6.11)
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After substituting the chip summation formula of Eq. (6.3) for Xrep, rearranging

terms, noting that N 2 /T 2 = Af/T, and interchanging the order of summation and

integration, one obtains

N' N'

N(t) = Afej2fot E X pmn(t), (6.12)
T m=-N' n=-N'

where Pmn(t) is defined as

Pmn(t) = (X1m(3-t)Xn(+.1(3))eJ2)foc( dc(.

This equation can be expanded by using the definition of xn from Eq. (6.4),

giving

Pmn(t) =

e2fmt - e-j2ftfmnEej2nFnc(') dr,T/N T/N

(6.14)

in which Fn is as defined in Eq. (6.8), and finn is defined as

finn = fm - fn. (6.15)

The formula for pmn(t) will be simplified in six steps. The first step is to

change the dummy-variable of integration to X = T - t1, giving

Pmn(t) = e-j2nfmntn ej21tfmt x

f•i (X-t+tn-tm +Cn(X)Iej27FnEn(X)e-j
2 7tfmnnXd()T

(6.16)
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where En(') is a shifted version of the flutter process 0(.), defined as

En(t) = E(t+tn). (6.17)

The second step is to shift the independent variable from t to t- tm + tn,

i.e., to convert the formula for pmn(t) into a formula for pmn(t- tm + tn). Before

doing so, however, one can deduce from the definitions of tn, fn, and finn in

Eqs. (6.5), (6.6), and (6.15) that the quantity fmntn must take an integer value

(remembering that N is an odd integer), and it follows that the first exponential

factor preceding the integral in Eq. (6.16) has unit value, and can be dropped.

Thus,

Pmn(t-tm + tn) = ej2nfm(t- tm + tn) X

J l('-t/)-(X+ )n(X)tej2ntFn•n(•Q)e-j2KtfmnX dT/. (6.18)

(The integral now looks a lot like that of Eq. (5.13) of Section 5, but a slightly

different analysis technique will be used here.)

The third step in simplifying the formula for pmn(t) is based upon the idea

that the [I(.) functions merely cause the integration limits to collapse to finite

values, and if the eCnQ) term in the second H[(-) were set to zero the effect would

be to shift one or both of the collapsed integration limits by an amount that could

not exceed Emax, defined as

Cmax max IE(ti. (6.19)
It1 T/2

Furthermore, since the integrand has unit magnitude the value of the integral

would only be perturbed by an amount 2Eimaxll, where the complex number Tl

has, at most, unit magnitude. (The 2 accounts for the possibility that both limits

of integration could be perturbed.) Thus, the cn(X) term in the second H1(.)

function of Eq. (6.18) can be set to zero if a correction term 2 fEmax f1 is added:
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Pmn(t-tm + tn) = ej21cfm(t- tm+ t,) x

12Emax1] + f(+00 nX-tlI-I/- X eIN(X)2e-i2nfmn dX (6.20)

where 1l is some complex number (which we shall never bother to compute)

that satisfies Ill < 1. The number T1 can depend upon m and n, and it is also a

function of t; however, it could be expressed as a function of t- tm + tn. It is also

convenient to absorb the leading exponential factor into the definition of T7

(which does not alter its magnitude). Thus, we define

1imn(t-tm + tn) = ej22tfnm(t - t. + rn) Ti (6.21)

so that Eq. (6.20) becomes

Pimn(t-tm+tn) = 2EmaxTimn(t-tm+tn) + ej2lfm(t-tm+tn) x

fl°I-I•'t]II[•' ejnFn(XL) e-j27cfmnX dX']!1TN (6.22)

where the function 1lmn -) obeys I1m .-)I•- 1. (It is important to remember that

Tlmn(') merely accounts for the deletion of the CA(X) term in the second I(.)

function).

The fourth step is to assume that the flutter process e(t) changes slowly

enough during a single chip's duration that it can be approximated by a fixed

value (which can be different for each chip). This assumption automatically

applies to E-n(t)as well, since it is just a shifted version of e-(t) and permits the

following approximation to be made under the integral:

eJ2nFnCn(X) = ej2ltFnFn(0) = ej21tFnE(tn), (6.23)
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where the last equality follows from the definition of En in Eq. (6.17).

Before this approximation is used, it is worthwhile to take a closer look at

how slowly varying e(t) must be. For the approximation to be valid, the phasor

on the left-hand side of Eq. (6.23) must stay relatively constant during the chip

interval T/N, and this means that the angle 27tFnEnQ,) must not change more

than about 0.3 rad. If, indeed, e_(t) changes very slowly then its net change

during the chip interval can be estimated as the product of its derivative, y(t),

and the chip interval T/N. (Recall from Section 3 that y(t)=t(t) is the

normalized frequency deviation of the flutter.) Since En(X.)= Ek +tn) by

definition, so that the derivative of enX) at the center of the chip interval is y(tn ),

it follows that the angular change would be well approximated by

27rFny(tn)T/N. Thus, our assumption requires that

27iFny(tn)T/N < 0.3 rad (6.24)

be approximately satisfied, which means that the equivalent observer velocity of

the flutter (see Section 3.1.3) must satisfy the approximate limit

cy(t0 ) 5 c 0.3 rad N = 7500 cm/s. Af (6.25)
2Fn FT N Fn

(The fact that AfT=N 2 was exploited in the last step.) For example, with a

time-bandwidth product of 10,000 in a sonar whose bandwidth is about

one third of its center frequency fo (around which the chip frequencies Fn are

packed), the equivalent observer velocity can range up to about 25 cm/s without

violating the upper limit expressed in Eq. (6.25).

We can now put the approximated value of Eq. (6.23) into the integral

formula of Eq. (6.22) and factor it out of the integral, giving

Pmn(t-tm+tn) = 2*maxmn(t-tm +tn)

+ 00

+ ej2ntfm(t-tm+ tn) ej2ltFn4tn() ,,X- e-J 21tfmnX dX, (6.26)
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The fifth step in simplifying the formula for Pmn(t)is to evaluate the

integral. It is the same as the integral of Eq. (5.15) with T/N substituted for T

and fmn substituted for ft, and it can be deduced from Eq. (5.19) that the integral

is given by

J *.., dX = I(] T-ItI sinc[(T'[ItIfmn] eJlfmnt. (6.27)

From the definitions of fmn and fn in Eqs. (6.15) and (6.6), respectively, it follows

that

fmn [(rn) - (n)]NN (6.28)T'

and, with minor algebraic manipulation and use of A(-), the integral reduces to

. (6.29)

The sixth step is to substitute this formula into the expression for

pmn(t- tm + tn) that was obtained in Eq. (6.26) and then undo the variable shift
that was done previously, by substituting (t- tn + tin) for t. This gives the result

Pmn(t) = 26maxlimn(t) + ej2nrfmt ej2ntFnE(tn) x

T A~ -tn tmsincý[92(m)- Q(n)]A( T-T-• t ) exp[-jrtfmn(t-tn+tm,)].

(6.30)

However, from the definition of tn in Eq. (6.5) one can determine that

tn+tim = -(n-rm) 1 , (6.31)
N
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and from the expression for finn in Eq. (6.28) one then has

exp4-jctfmn(t-tn+tm)] = (-lmne-jilfmnt, (6.32)

where (-1)mn is defined as

(1)mn = (-i1)[(m)-Q(n)](m-n) (6.33)

This simplifies the expression for Pmn(t) in Eq. (6.30) to

pmn(t) = 2emax rim(t) + (-1)rn eJ2 dfmnt eJ27cFne(tn) x

T A~t -(n-m)W/Nl sinc {[nf(m)-n(n)]A t -(n-m)T/N) (6.34)
NT/N I T/N '

where fmn is the average of the baseband frequencies of the mth and nth chips:

fmn = fm+fn (6.35)

2

The six-step simplification of the formula for Pmn(t)is now complete.

6.3 DIAMONDS IN THE NO-FLUTTER CASE

In the absence of flutter the formula for Rt) in Eq. (6.12) reverts to

N' N'

p(t) = Afej2tfot Y, I pmn(t), (6.36)T m=-N" n=--N'

and, setting e(.) =0 in the earlierformula for Pmn(t)of Eq. (6.30), one obtains

Pmn(t) = (-)mn ej2ltfmnt x

T A(t --(n-m)T/NI sinc {[2(m)-Q2(n)]A(t -(n-m)T/N (6.37)
N T/N t T/N
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The double summation of the NxN array (Pmn(O) in Eq. (6.36) can also be done

along diagonals:

N' N' +(N-1)
I I Pmn(t)= I Dk(t), (6.38)

m=-N" n=_-N k = -(N- 1)

where Dk(t) is the sum of terms along the kth diagonal.

Dk(t) = Y Pmn(t). (6.39)
mr,n:

n-m=k

Notice that the subscript k ranges over a larger range of positive and negative
values than m and n (because an NxN array has 2N- I diagonals), and the

Dk'S do not all have the same number of terms. For example, Do is the sum of
the N terms along the main diagonal of the Pmn array, whereas DN_] consists
only of the upper-right element pIN'(t). In general, the kth diagonal has N-ikl
elements.

A picture may help to clarify the nature of this diagonal summation. It can
be seen in the definition of Eq. (6.13) that Pmn(t), or Pmn(t) in the unfluttered
case, is the result of correlating the nth chip of the echo pulse with the mth chip
of the replica. The results of these chip-to-chip crosscorrelations are depicted in
Fig. 6.1 for a 9-chip waveform. Each of the cells represents one of the 81 terms

pmn(t). (The hand-drawn waveforms are only intended to be suggestive of the
complex-valued functions that would actually result in the case of a stepped FM
wave, and should not be taken too seriously.)

A component Dk(t) is formed by adding up those elements pmn(t) for
which n-rn = k, i.e., the elements that align vertically in Fig. 6.1. For example,
Do(t) is obtained by adding the elements that lie along the vertical midline of

Fig. 6.1, which are the self-correlations of the nine chips.
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TIME •

2T/N

2T

FIGURE 6.1
GRAPHIC REPRESENTATION OF THE Pmn(t)'S SHOWING THEIR

TIMING RELATIONSHIP AND ALIGNMENT PRIOR TO
VERTICAL (DIAGONAL) SUMMATION, FOR N = 9
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From the no-flutter formula for pmn(t) in Eq. (6.37) it follows that

Dk(t) = T A(t7-kT/N xDk~) -N -T/-N X

(-a)mn eJ2ltfmnt sinc I Q2(m)-Q(n)]A(t-kT/N (6.40)re,n: T--/N( .0

n-m=k

Since the summation contains N-Ikl terms, each of which has at most unit

magnitude, it follows that

IDk(t)< (N-kl)T N A kN (6.41)

From this it is clear that each Dk(t)is only nonzero within an interval of duration

2T/N centered at t=kT/N; indeed, it is contained entirely by a diamond

shaped envelope of duration 2T/N centered at t= kT/N. The peak-to-peak

amplitude of that bounding envelope is (1-Ik/NI)2T. (However, it turns out

that Dk(t) stays well within its bounding envelope most of the time.)

Because of this diamond shaped nature of the bounding envelopes, the
Dk(tOs will be referred to as diamonds. Since the diamonds Dk(t) are of

duration 2T/N but are spaced apart by T/N, there is some degree of overlap:
Each time instant t is covered by exactly two of the diamonds. The size of these

diamonds can be inferred from Fig. 6.1. The 81 small 450-rotated squares that
make up the figure can be regarded as the bounding envelopes of the pmn(t)

terms. When vertical strings of these are added, the overall bounding

envelopes form 17 overlapping diamonds.

These 17 overlapping diamonds are as shown in Fig. 6.2. Specifically,

the tall diamond shaped figures depicted in Fig. 6.2 are the bounding
envelopes that appear in the right side of Eq. (6.41). They are shown as white

for even k, and shaded for odd k, with the white diamonds in front. However, the

diamonds actually overlap in an additive fashion.
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2T/N

D-1() DI(t)

D-3(t) 3(t)

D-5( D5(t)

D.7(t) DT(t)

D0 (t

-8(t D-6t D2t D2(t) D D6(t) 8(t

2T

FIGURE 6.2
PATTERN OF 17 OVERLAPPING DIAMONDS FOR N =9
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Since the diagonal summation formula of Eq. (6.38) is merely a
rearrangement of the square array summation formula for p(" of Eq. (6.36), the

Dk'S must sum to give p(t):

+(N-1)
p(t) -Af ej2ntfot Y Dk(t) . (6.42)

T k = -(N- 1)

Thus, the compressed pulse p(t) may be considered to be a sum of 2N-I
diamonds Dk(t), each of width 2T/N, that partially overlap to give a total
duration of 2T, whereas the original signal Xrep(t) was a sum of N contiguous,
non-overlapping rectangular chips xn(t) of duration T/N that gave a total
duration of T.

In contrast to the constant power nature of xre(t), however, the pulse p(t)
has its energy concentrated at the center. The central diamond, D0 (t), which
contains the chip self-correlations, is obtained by setting k = 0 in the formula for
Dk(t)of Eq. (6.40) and performing the summation over the main diagonal, i.e.,
over terms satisfying m= n. This makes the argument of sinc(.) equal to zero
and forces (-1)mn =1 (using its definition in Eq. (6.33)). The result is

N'

-NA __ E (6.43)
n=-N'

It will be recalled from their definition in Eq. (6.6) that the fn's are given by

f. = N ,(n) (6.44)
T

where the hop "code" U(n) reorders the integers into scrambled order.
However, in the summation of Eq. (6.43) it does not really matter what order one
uses for the integers, and this means that

N' N'

E ej21tfnt = E exp(j2icNnt)• (6.45)
-- N' m=- N'1
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This summation is then immediately recognizable as a truncated Fourier series

of 8(t) over the interval jtl< 2T/N, and it invites the use of a well-known

trigonometric identity (see §19.39 of Spiegel (1968)), giving

N' - sin[t(N2/T)t] sNc[Aft]

I expýj 2nt N nt) N (6.46)_ Sfl[Atn=--N" sin[nt(N/T~t] =Nsin4•(N/T)t] ' (.6

where the last formula has been simplified by using the fact that N 2 =AfT. The

formula can be substituted into the summation formula for Do(t), i.e., into

Eq. (6.43), to give

Do(t) A sinc(T " (6.47)

It is clear (see Eq. (6.46)) that the numerator's sinc(.) is of much shorter duration

than the denominator's sinc(.), and the effective duration of Do(t) is therefore

approximately equal to that of sinc(Aft), which is 1.5/Af (see Eq. 2.11)).

Actually, however, the ratio of sinc(.) functions in Eq. (6.47) is periodic with

period T/N. (This can be verified most easily in the ratio of sine functions in the
middle of Eq. (6.46).) Thus, the central spike of the numerator's sinc(-) function

is repeated at t=+T/N, i.e., at the ends of the diamond. However, the A(.)

function multiplier in Do(t), as expressed in Eq. (6.47), goes to zero at the ends

of the diamond, and kills these two extraneous spikes; only the central spike

survives.

Furthermore,

Do(t) =_ T sinc(Aft) (6.48)

if the effective duration is enough smaller than T/N that the A(.) function and

the denominator's sinc(.) function both have nearly unit value. Simple algebra,

using N 2 = AfT, shows that the condition 1.5/Af<<T/N is equivalent to

AfT >> (1.5)2, (6.49)
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which is easily met. Thus, the formula for the central diamond Do(t) given in

Eq. (6.48) is a pretty qood approximation.

In fact, when that approximation is put into the summation formula for the

compressed pulse p(t), i.e., into Eq. (6.42), it gives a contribution

[p(t)]0'diamond _ Afej2nfot Do(t) = Af sinc(Aft)ej 2 7cfot , (6.50)T

which coincides with the ideal, theoretical form of the compressed pulse for a
large time-bandwidth product, CAFS waveform of bandwidth Af (see

Eq. (2.29)). There is nothing left for the other diamonds to contribute. Indeed,

they are constructed from the off-diagonal terms of the Pmn array, % thich consist

of crosscorrc!:itions of the chip waveforms (all of different frequency), so they

should be vanishingly small anyway. They do contribute a small amount of
"ripple" that lasts for the full duration (2T), sometimes known as self-noise.

6.4 FLUTTERED DIAMONDS

When the effect of flutter is put back into the problem, its effect upon p'mn(t)

(as given in Eq. (6.34)) occurs in two steps: (1) A factor ej27rtFn(tn) is applied,
and (2) a quantity 2 cmax Tlmn(t) is added. When the Pmn(t) array is summed in
Eq. (6.12) to give the fVuttered and compressed pulse ý(t), the result can be
restated as

N' N'

p(t) = Pn(t) + AMfej2tfot •_,C X pn(t) , (6.51)
T nm=-N' n=-N'

where fn(t) is defined as

S N' N'

q(t) - Af ej2nfot 2Emc I E llmn(t) (6.52)
T L m= -N' n=-N'

and pmn-(t) is defined as
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pm(n)(t) = (.)rn ej2iltfmnt ej2ntFne(tn) x

NT At -(n-m)T/N sinc [ (m)-!2(n) ]At-(n-m ) T /NN . (6.53)

The latter quantity, pm)n(t), is the important one. It is the same as the Pmn(t) Of

the no-flutter case, except that the phase-deviating effect of the flutter has been

included. The p7(t) term, which is an artifact introduced when a convenient

simplifying approximation was made, will later be shown to be relatively

insignificant.

The procedure now is to mimic what was done in Eqs. (6.38)-(6.47) for

the no-flutter case. Since the method has already been described, the

descriptions given here are rather terse:

The double summation of the NxN array Wpm(t)} , as given in Eq. (6.51),

can be done along diagonals,

N' N' +(Nl' pNP (t)= (N-i) Dk(t), (6.54)
m---N' n=--N' k = -(N- 1)

where the fluttered diamond Dk(t) is the sum of terms along the kth diagonal.

Dk(t) = X pn(t) . (6.55)
m,n:

n-m=k

From the formula for pm)n(t) in Eq. (6.53) it then follows that

N = T A t-kT/N X
Dk(t)- N T/N)

m~: (-l)mn eJ2iFnE(tn) ej2ltmnt sinc[ [i2(m)-Q(n)]A(t -kT/NT f
m,n: TIN I

n-m=k
(6.56)
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Even in the presence of flutter, the diamond-envelope bounding formula of

Eq. (6.41) applies; i.e.,

and the diamonds Dk(t) have the same locations and bounding envelopes as

they did in the no-flutter case. Figures 6.1 and 6.2 thus remain applicable when
flutter is present. From the formula for ý(t) given in Eq. (6.51) and the

summation-by-diagonals representation of Eq. (6.54), it follows that

+(N-1)

P(t) = • 1 (t) + Afej27tfot 1 Djk(t) (6.58)T k = -(N- 1)

As in the no-flutter case, the central diamond, Do(t), is obtained by setting
k = 0 in the Dk(t) formula of Eq. (6.56) and performing the summation over the
main diagonal. The result can be expressed as

Do(t) ITA(__L_ B)(t) (6.59)N ýT/NW

where B(t) is defined as
N'

B(t) = Z ej27FnC(tn) ej2nfnt (6.60)

Again, it will be recalled from their definition in Eq. (6.6) that the fn's are given by

f. = N--2(n) , (6.61)
T

where the hop "code" Q(n) reorders the integers into scrambled order.
However, in this flutter-perturbed case we shall have to be more careful in
changing the order of summation. In particular, we change the variable of
summation to m = 1(n), which ranges over the same limits as n, and gives

f, = (N/T)m. This change of summation variables, as applied to the definition
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of B(t) in Eq. (6.60), gives

N'

B(t)W= ej9m exp[j21t(Njmt] (6.62)
m=-N' T

where (1m) is the same as the sequence (22tFnF(tn)) but in inverse scrambled

order:

em = (21rFnE(tn)}n=Q- 1(m) (6.63)

where •- 1 (.) denotes the inverse mapping of the hopcode. It should be noted
that the sequence (21cFne(tn) represents the instantaneous phase deviation of
the received waveform, measured at the centers of the chips, and samp!ed
throughout the entire duration T of the hopcode waveform. Thus, {®m} is a very
thoroughly mixed up version of the original sequence of phase deviation

samples.

The summation in Eq. (6.62) is a finite Fourier series in which the Fourier
coefficients are the set (eJem). Thus, its average power is

NP

(IB(t)12) = ei = N. (6.64)
m=-N'

If the flutter is sufficiently strong that the phase deviation varies over a range of

at least 2rc in the duration T of the hopcode waveform, then J.m) will be a
sequence of uniform amplitude but totally random phase. (This assumes that
the hop "code" 0(n) is a random sequence.) It does not matter whether the
flutter-induced phase deviations change rapidly or slowly, the inverse

scrambling will thoroughly "whiten" the sequence. This means that the

waveform B(t) will have its energy rather uniformly distributed over time.

This is a different result from the no-flutter case. In fact, the no-flutter case

can be gotten by setting the elements of the sequence ({m) to zero in the B(t)
formula of Eq. (6.62), and using the trigonometric identity from Eq. (6.46):
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[B(t)]noflutter - N sinc[ft](6.65)sinc[(N/T)t] (

Thus, for the no-flutter case the energy of B(t) is concentrated at the center in an
effective duration 1.5/Af. The total energy in the central pulse of Eq. (6.65) is
then N 2/Af, and that gives a total energy in the central diamond Do(t),

accounting for linear multiplication by T/N in Eq. (6.59), of T 2 /Af.

Let us see how this compares with the energy in the central diamond
Do(t)for the flutter-included case. Assuming the power of B(t) is approximately

constant and equal to the value N given in Eq. (6.65), the only time-varying
effect is due to the factor A[tAT/N)] that is applied in Eq. (6.59). It has a mean
square value of 1/3 over the diamond's duration of 2T/N, so the total energy of
Do(tj accounting for the scalar factor T/N in Eq. (6.59), is

[Do(t)]energy = N x 1/3 x 2T/N x (T/N)2 = 2 T 2 /Af (6.66)3

(using N 2 = AfT), which is two-thirds as much energy as in the no-flutter case.

However, the loss of central pulse energy is not nearly as serious as the
fact that the energy is smeared all over the central diamond, and this will
happen even with a modest amount of flutter. Indeed, the effective duration of

this diamond pulse (using the result following Eq. (2.9)) is approximately
(1OT)/(9N). This is larger than the no-flutter compressed pulse duration by a

factor that can be computed as

(1OT)/(9N) = 20 TAf . (6.67)
1.5/Af 27

As in the no-flutter case, the other diamonds are constructed from the off-

diagonal terms of the Pmn array, which consist of crosscorrelations of the
individual chip waveforms (which are all of different frequency). They will still

contribute some "ripple" that lasts for the full duration (2T), but their contributions

should not be enlarged by the phase perturbations that are induced by the
flutter. However, an exception to this statement will occur if the flutter is so
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strong that the pure tone spectral spreading bandwidth Bio, discussed in
Section 3.1.6, is on the order of the chip bandwidth, i.e., on the order of 1.5 N/T.
In this case the crosscorrelations can be enhanced by frequency "leakage"
caused by the flutter-induced Doppler spreading.

For completeness, we must acknowledge that there is an additi3nal
contribution in the form of the term ý,q(t) defined in Eq. (6.52). It was defined in
terms of a double summation of terms Tlmn(t), each having no more than unit
magnitude, that were originally defined through Eq. (6.22). Because of that
definition, each ilmn(t) has (approximately) the same "activity window" as 1mn(t);
i.e., it is zero except (approximately) when t falls within a window of duration
2T/N centered at t=(n-m)T/N (see Eq. (6.34)). Thus, one can do the double-
summation of T1mn(t)'S in Eq. (6.52) by diagonals just as was done for Pmn(t).
The result is that at the location of each diamond Dk(t) there is also a
contribution from diagonally summed lrmn(t) terms. Since each diagonal has at
most N elements, the summed contribution of ilmn(t) terms for any diamond
could at most have magnitude N (since Ilmn(t)I< 1 by definition), and that could
only occur at the central diamond (with extraordinary coherence in the
summation).

This upper limit magnitude N, after multiplying by the factor 2 emax that
appears in Eq. (6.52), can be compared with the magnitude of the central
diamond Do(t). However, it is easier to express that comparison in terms of
energy: The energy of Do(t)was determined in Eq. (6.66) to be (2/3)(T 2/Af).
If the competing contribution due to rlmn(t) has, at most, magnitude 2 Nemax,
then its total energy over the 2T/N duration of the central diamond can be no
greater than (2NFmax) 2 x2T/N. The ratio of this upper limit of energy to the
energy of Do(t)is therefore

(2Nemax) 2 x2T/N = 4[ max (TAf)0"75]2 (6.68)

2 (T2/Af) 3 T
3

which will be insignificant if
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emax << « f T (6.69)
2 (T Af)0 75

This condition (which is d very L.onservative one) will usually be met, so

that the contribution of the Tilmn(t)terms remains negligible. For example, with a

time-bandwidth product of 1000 and a waveform duration T of 1 s, Eq. (6.69)

requires that the maximum time axis perturbation be less that 4.9 ms.

6.5 THE SPECIAL CASE OF STEPPED-LINEAR FM

If the hop "code" is the trivial one K(n)=n, then the waveform is a

stepped-linear FM wave burst, and the flutter effect is much less damaging. In

that case the sequence (8m) of Eq. (6.63) is the same as the sequence

(27tFme(tm)} without any scrambling. This means that the Fourier series in

Eq. (6.62) is

NA

B(t)= I ej27CFmE(tm) exp[j 2n:N()mt]" (6.70)

However, the instantaneous phase shift due to the flutter is

4(t) = 27re (t) x instantaneous frequencyl (6.71)of waveform ) I

where the instantaneous frequency at time tm is Fm (see definition in Eq. (6.8)).

The result is

NP

B(t) = m eji(tm)exp[j27(t.)mt]. (6.72)
m=- N'

From the definition of tn in Eq. (6.5) we see that

m =Ntm. (6.73)
T
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When this is used in place of m in the series for B(t) of Eq. (6.72) the result can

be expressed as

(No

B(t)= Y, eji(tm)exp[-j2)rftm] .L" (6.74)

If it is assumed that the flutter process C(t), which produces the instantaneous

phase 4 in accordance with Eq. (6.71), varies slowly enough that it does not

change very much during the chip interval T/N (which is also the spacing

between sample points {tm}), then the summation of Eq. (6.74) approximates an

integral:

B(t) 1 1 I(T ej 0(t) exp[-j 21r ft] dt _ (6.75)
T T if ~Af -

T

This result, which can be used to estimate the duration of the central,
compressed pulse (since it produces the central diamond Do(t) through

Eq. (6.59)), is identical to the integral that was encountered in Section 5 (see

Eq. (5.61), for example). This should not be surprising, since a stepped-linear

FM wave burst closely approximates a continuous, linear FM wave burst if the

number of chips is large.

There is no need to pursue the stepped-FM case any further, since the

results of Section 5 apply. However, the behavior of the stepped-FM case

makes it easier to understand why a random hopcode waveform is more

susceptible to flutter. It will be recalled from Section 5 that the elongation of the
fluttered and compressed pulse in the linear FM case depended upon the size

of y(t)=t(t), the normalized instantaneous frequency deviation of the flutter

(see Eq. (5.107) for example). Thus, in the linear-FM case the magnitude of the

time axis perturbation c(t) can actually be quite large without causing much

pulse elongation, so long as it varies slowly enough that its derivative remains

small.

On the other hand, when a random hopcode is used the c(t) values are

effectively time scrambled during the replica correlation process, insofar as the
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central diamond Do(t) is concerned. This can be seen, for eximple, in

Eqs. (6.62) and (6.63), which can be interpreted as representing Do(t) (through

Eq. (6.59) in terms of an equivalent stepped-linear FM hopcode, but at the cost

of time scrambling the phase deviations. One may then conclude that, since E(t)

is replaced by a time ccramblbd ve'sion cf itself, its derivative (which wou!d play

the role of y(t) in the "equivalent" linear FM case) then exhibits very large

magnitudes even though the original E(t) might have been slowly varying.

This interpretation is in accord with the results of Section 6.3 for the

random hopcode case, where it was found that a modest amount of flutter would

smear the central pulse over an interval of duration 2T/N, no matter how slowly

•(t) varied, i.e., no matter how small y(t) was (assuming, of course, that e(t) did

cover a span of 27r radians during the waveform duration T). In effect, the use of

a random hopcode reorders and prewhitens the flutter process e(t), whether we

like it or not.

6.6 PROCESSING GAIN FOR A RANDOM HOPCODE

In the absence of flutter, the pulse compression (i.e., replica correlation)

filter reduces the sonar pulse duration from T to 1.5/Af, since the hopcode

signal is always a CAFS waveform. Thus, the processing gain yielded by the

replica correlation process is (see Section 2.3.4)

Proc. Gain _= 5 logyo/-•--T) = 5 loglo0(AfT) - 0.9dB (6.76)1.5

However, when flutter e(t)is present in sufficient strength to deviate the phase

by at least a few cycles during the duration (T) of the sonar waveform, then (for a
random hopcode) the results of Section 6.3 will apply: The energy of the pulse

will be smeared over the central diamond, which has an effective duration of

(l0/9)(T/N). The processing gain will drop to

Proc. Gain =5 logio (T =2.5ogio(AfT) -0.20B, (6.77)

9 NI
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where, to get the last step, use has been made of the fact that N = Y•fT.

To those accustomed to computing gain (in decibels) as 10logio(K)

where K represents a ratio of powers, energies, or durations, it is already hard

to accept the 5 logio(K) formula that accounts for the false alarm rate

characteristics of an energy detector (see Section 2.3.4). When the formula

degenerates to 2.5 log lo(K), it adds insult to injury. As if that were not enough,

one should also take into account the fact that the pulse energy in the central

diamond is diminished by a factor of 2/3 as reported in Eq. (6.66). Since this

reduction is against the direct competition of noise power, it degrades the

processing gain by 10 logio(2/3)=-1.8 dB, so Eq. (6.77) should be corrected

to
Proc. Gain = 2.5 log o(TAf) -2.0dB. (6.78)

6.7 RANDOM HOPCODE IN STRONG FLUTTER

There is an even greater degradation if the flutter process, y(t)=e(t),

becomes strong enough to spread the spectra of the chips outside their normal

boundaries. To take this rigorously into account, one would have to go all the

way back to the integral formula for pmn(t- tm + tn) in Eq. (6.22), and avoid

making the stepwise-constant C(t) approximation of Eq. (6.22). The resulting

difficulties in carrying out the analysis would be quite burdensome. There is a

another approach that gives a crude estimate of the degradation. It is based

upon a sequence of logical conclusions, as follows.

In Section 3.1.6 it was shown that a pure tone at frequency fo would be

subjected to spectral broadening due to the flutter, producing a bandwidth that

was given in Eq. (3.40) as

Bro =- 2f-yrmsfo (6.79)

for a flutter process y(t)=ý(t) whose point statistics described a uniform

distribution. (Very nearly the same result was obtained for the cases of

Gaussian and sinusoidal flutter.) It is reasonable to conclude that the
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bandwidth of the nth chip, at frequency Fn, will be spread to

Sn= 2 F k (6.80)

provided this bandwidth is significantly greater than the unfluttered bandwidth

of the chip, which is

Bn = 1.5N/T (6.81)

by Eq. (2.6) (since each chip is actually a tone burst of duration T/N).

The rationale for this conclusion is as follows: If the flutter spreads the

spectrum of a pure tone at frequency F, into a bandwidth Bn, then it ought to do

the same thing to any narrowband signal centered at Fn. By "narrowband" we

mean that its original bandwidth was significantly less than Bn. The nth chip

meets this definition of a narrowband signal if its original bandwidtri Bn is

significantly less than Bn.

The substitution of the sample standard deviation over the chip interval

T/N, y•/Y,', in place of Yrms in going from Eq. (6.79) to Eq. (6.80) was done for

the same reason that yCr was substituted for Yrms in going from Eq. (5.92) tvý

Eq. (5.106). (An independent sample of length T/N is taken for each chip.)

Although Eq. (6.80) gives the correct bandwidth for the fluttered chip only

when it is significantly greater than its unfluttered bandwidth 1.5 N/T, one can

correct that defect by approximating

S- Bn + 2Fy /N) Fn . (6.82)

Having defended and improved the formula for the bandwidth of a fluttered chip,

we can now proceed with the strong flutter analysis.

When the replica correlation process is done, the central diamond Do(t)

(which contains the fluttered and compressed pulse) consists of the summed

142



diagonal elements of the Fmn(t) array; i.e., it consists of summed contributions of

each chip correlated with a fluttered version of itself. Each individual correlation

may be regarded as a replica correlation filtering process for the chip. Any

spectral energy of the fluttered chip that falls outside the spectral width of the

unfluttered (replica) chip will be lost, and the energy loss factor will be

approximately given by

Bn - 1 + 2(63y8y3
Bn 1.5N/T (6.83)

Since the chip frequencies Fn are packed around the center frequency

fe, it does not violate the approximation very much to replace Fn by fo in this

equation. Thus, each contributing chip-replica correlation loses approximately

the same amount of energy, that loss being given by

energy IOSSdB = 1010og0o[1 + 2IffI cyOfo (6.84)
1.5 N "

As far as the contribution to the central diamond is concerned, energy that is lost

from one correlation does not "spill" into one of the others, because the chips do

not arrive at the same time. Thus, all of the contributions to the energy of ttiJ

central diamond Do(t) are diminished (approximately) by the amount given in

the formula, so the energy of the fluttered and compressed pulse is diminished

by that same amount, which means that the processing gain formula of

Eq. (6.78) must be corrected to

Proc. Gain 2.5loglo(TAf) -2.4dB

~1Olog 1o[1 + 2.3 OffT( fo)Y(T/N)j (6.85)

to allow for strong flutter. (The fact that N 2 =AfT has been used to simplify the

result.)
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6.8 SECTION SUMMARY

In the absence of flutter, a random hopcode waveform performs just as

well as any other CAFS waveform, such as a linear FM wave burst (insofar as

the basic issues of this report are concerned). However, if there is enough
fluiter to cause phase deviations that accumulate through a few cycles of phase

error during the interval of the waveform, then the energy of the compressed

pulse will be spread to a duration roughly equal to the chip interval (actually
2T/N), and about one-third of the energy will be lost, although it must be

preserved as "grass" noise that is distributed throughout the 2T interval.

Especially in the presence of slow flutter (where c(t) is significant but y(t)
is small), the spreading will be significantly less for a linear FM wave burst than

for a random hopcode. (Pulse spreading in the case of a linear FM wave burst

occurs only when the magnitude of y(t)= s(t) becomes significant.)

If the flutter becomes strong, then the fluttered and compressed pulse of

the linear FM wave burst will continue to elongate, with no loss in energy. The

behavior for the random hopcode waveform is quite different: The duration of
the central pulse never becomes any larger than 2T/N as the flutter increases.
Although this might seem to be an advantage, the price one pays for this

advantage is that the energy of this fixed width pulse diminishes rapidly when
the flutter becomes stronger (i.e., when it becomes strong enough to spread the
chip spectra significantly).

Indeed, once the flutter is strong enough to randomize the phases of the
Fourier coefficients of the B(t) series of Eq. (6.62), then the central diamond

exhibits the same behavior regardless of whether the hopcode has a random or
stepped-linear FM form. However, for a random hopcode the non-central

diamonds are all mixed up, and have roughly comparable energies. For a
stepped-linear FM hopcode, the total energy remains clustered around the
center (as described in Section 5).

Perhaps it will be helpful to the reader if the progressive effect of
increasing flutter upon the compressed pulse is restated, in the simplest terms,
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for each type of hopcode waveform (for simplicity, we assume y(t) has a uniform

distribution).

Pulse A: Stepped-linear FM hopcode Starting at 1/Af, the duration of p(t)

increases as its amplitude diminishes, keeping a constant energy. Eventually it

becomes wide enough that it exhibits an approximately flat-topped shape. As

the flutter gets stronger, the duration is given approximately by the formula of

Eq. (5.108), i.e.,

dur (-)( 2x yMs fo). (6.86)

Pulse B: Random hopcode Starting at 1/Af, the duration first increases faster

than for pulse A, but stops increasing when it reaches a width of 2T/N, at which

point it has lost one-third of its original energy. From that point onward it keeps

a constant width, but diminishes in energy and amplitude. The energy that is

gradually bled away from the central pulse is redistributed all over the domain

(which is a triangular window of duration 21), in the form of "self-noise". The

amplitude of pulse B eventually begins to track that of pulse A, but as both

amplitudes diminish, pulse A retains its energy by elongating, whereas pulse B

has to sacrifice its energy because it refuses to elongate. Soon pulse B

becomes lost in its own "self-noise".

It is interesting to note that in radar (and communications) applications

the use of a random hopcode is often done with no hope of ever compressing

the pulse to less than a chip width; indeed, noncoherent processing is often

applied, so that one concedes at the outset that the processing gain will only be

2.5 loglo(TAf) -2.4dB. (When that is done, there is little penalty involved with

dispersing the chips over a larger time interval to make a frequency-hopped,

time-hopped waveform, if desired.)

There is one final comment to be made before proceeding to the

computer simulation example: One should avoid the conclusion that a random
hopcode can ever do better, in general, than an FM wave burst. Although the

formula (i.e., 2.5 log lo(TAf) -2.4 dB) seems to imply that the processing gain
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for the random hopcode can increase without bound, in contrast to the FM wave

case of Section 5, this is only an illusion created by the approximations. In

particular, note that the summary discussion above for pulse B did not include

the "energy loss" adjustment of Section 6.7, and Eq. (6.85). For a fixed center

frequency fo and bandwidth Af, the time-bandwidth product AfT can only

increase in proportion to the duration T, and the chip duration T/N must then go

up as MT since AfT=N 2 by Eq. (6.10). As the (pure tone) chips increase in

duration their bandwidths become very narrow, and it becomes increasingly
likely that the flutter will spread their spectra outside the chip band limits. Thus,

any amount of flutter will eventually display the attributes of "strong flutter" as
referred to in Section 6.7 if the waveform duration T is long enough, and the

processing gain will be limited.
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7. COMPUTER SIMULATION EXAMPLE

For purposes of illustration, an example of flutter is studied in this section

for a hopcode waveform of the type analyzed in Section 6. It also approximates

the FM wave burst of Section 5 when an ordered sequence of chip frequencies

is used instead of a random sequence.

7.1 GENERAL SPECIFICATIONS OF THE EXAMPLE PROBLEM

The following example is selected:

Sonar center frequency: fo = 200 kHz

Sonar bandwidth: Af = 50 kHz

Waveform types: Stepped-linear FM hopcode

Random hopcode

Waveform durations:

T = 505.62 ms T = 52.02 ms T = 4.5ms

159 chips 51 chips 15 chips

(chip = 3.18 ms) (chip = 1.02 ms) (chip = 0.3 ms)

TAf = 25,281 TA = 2,601 TAf = 225

Flutter strength: Cyrms = 0.5, 2, 5, 20, and 100 cm/s

Flutter type: Periodic parabolic cusps

Period T. = 325 ms

(flutter frequency fundamental fF = 1/TE = 3.077 Hz)
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7.2 THE FLUTTER e(t)

The flutter is defined in terms of the perturbation of the time axis E(t), as

follows:

F3 ~Y rs LT r 1  for Iti :5LTLy12 TE 2'

repeated with period Te for Itt >T--

Figure 7.1 displays e(t) for the case where the equivalent observer velocity

Cyrms is set to 5 cm/s:

z 0

W 2
I- .

W "4

< -1

I-- -....

-400 -200 0 200 400

TIME - ms

FIGURE 7.1
TIME AXIS PERTURBATION E:(t) OF EXAMPLE, FOR AN

EQUIVALENT OBSERVER VELOCITY Cyrms = 5 cm/S
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The normalized frequency deviation of the flutter, y(t) = c(t), is

-3yrms for ItT 2

y(t) = (7.2)

repeats with period TE for Itl > T.)2

The equivalent observer velocity cy(t) is plotted in Fig. 7.2 for the case where
the equivalent observer velocity Cynms is set to 5 cm/s (assuming c = 1500 m/s):

Wi
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8o
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0-5
4Zj

-400 -200 0 200 400

TIME - ms

FIGURE 7.2
EQUIVALENT OBSERVER VELOCITY cy(t) OF EXAMPLE,

FOR CYrms = 5 cm/s

Two things are evident from this plot of cy(t). (1) Over the long term, the
normalized frequency deviation y(t) is uniformly distributed over its range, and
(2) because of its simple sawtooth waveform, y(t) can be readily expressed in
terms of a Fourier series (Tuma, 1979):
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y(t) = 1-2 YYrms (-i)n sin(27tnft), (7.3)
n=1

where fF is the flutter's fundamental frequency, i.e., fE = I/TE, which for the
example is 3.077 Hz. It follows that the power spectrum of y(t) is

00

Sy (f) - 12 yms- n=21 (f nf•)+ 8(f+nfE)1" (7.4)

Since the impulses vanish except where f= +nfE, this formula remains valid if
( f/fe }-2is substituted for n 2 :

Sy(f) =12yrs f-2 j [5(f-nfe)+ 8(f+nfF)]" (7.5)

2 n=1

This formula shows how the periodic nature of y(t) gives rise to a line
spectrum rather than a smooth spectrum as might be the case for a random
process. However, a more significant aspect of this formula is that Sy(f) rolls off
like f- 2 , which means that SE(f) rolls off like f- 4 , since Sy(f)=(2irf) 2 SC(f).
Thus, the flutter process of our example, although deterministic and periodic,
has a spectral rolloff that is similar to those of the measured flutter processes
that were presented in Section 4.

The reader may wonder why a deterministic, periodic, non-random flutter
was chosen for the computer simulation example. The advantages are as
follows.

(1) Being deterministic, it can be replicated easily by other investigators.

(2) For the durations listed in the example specifications of Section 7.1, the
"window" of the sonar waveform is at most 505.62 ms. That is only enough time
for about one and one half cycles of c(t) anyway, which is not enough time for
the replica correlation process to "see" whether e(t) is truly periodic, or merely
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quasi-periodic with enough long-term randomness to smooth its spectrum. To

put it another way, the windowing effect of the transmitted sonar waveform

duration smears the effective spectrum of e(t) through sidelobe leakage, so that

it no longer has a line spectrum anyway.

(3) The time varying nature of e(t) depicted in Fig 7.1, with its fundamental

frequency of approximately 3 Hz, is not entirely unreasonable as an example of

the possible effects oý platform motion. Such a motion might result from

turbulence-induced nonlinear oscillations of the sonar unit as it is pulled or

pushed through the water. Indeed, the plot of E(t) looks rather like a full-wave

rectified sine wave, rich in harmonic structure, and suggestive of simple

harmonic motion that has been subjected to some kind of nonlinear conversion.

Nevertheless, the fact that s(t)does not consist of exactly sinusoidal pieces

(the pieces are parabolic arcs, not sinusoidal arcs) means that E(t) never looks

exactly like a simple, single frequency sinusoid no matter how short the window.

(4) As mentioned above, the power spectral density SE(f) rolls off like f 4,

which is generally consistent with the flutter spectra described in Section 4.

(5) This e(t) gives a very simple y(t), which has a simple long-term

distribution (specifically, a uniform distribution).

(6) Being described by a simple formula, the E(t) of Fig. 7.1 can be easily

computed for any discrete sampling rate that is chosen for numerical

computation. Thus, if one wants to double the sampling rate, the same e(t) can

be used; a deterministic e(t) is not sample-rate dependent in the way that a

random noise sequence generally is, nor does it display the artificial

characteristic of being perfectly bandlimited.

Figures 7.1 and 7.2 describe the flutter process for the condition

Cyrms = 5 cm/s; however, E(t) and y(t) need only to be scaled by 0.1, 0.4, 4,

and 20 to give the other specified flutter strengths of 0.5, 2, 20, and 100 cm/s.
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7.3 EFFECT FOR A VERY LARGE TIME-BANDWIDTH PRODUCT

For the case of relatively weak flutter, Cyrms= 0.5 cm/s, Fig. 7.3 depicts

the magnitude of the fluttered and compressed pulse for the longest duration of

slightly over a half-second (T = 505.62 ms), for which the time-bandwidth

product is 25,281. The upper part of the plot is for the stepped-linear FM case,

and the lower part (plotted upside down) is for a random sequence of chip

frequencies. The pulse magnitudes have been normalized to have exactly unit
value in the absence of flutter. In effect, Fig. 7.3 depicts the no-flutter case since

the flutter is so weak that both pulses have nearly full (unit) amplitude.

1.5

LUOW

wLJ 0

-J

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

TIME -- ms

FIGURE 7.3
FLUTTERED AND COMPRESSED PULSE FOR CYrms -- 0.5 cmls,

FOR 505.62 ms TRANSMISSION, 50 k~lz BANDWIDTH
LINEAR FM (UPPER) AND RANDOM HOPCODE (LOWER)

The "dumbbell" symbol at the top of the plot indicates the duration

predicted by Eq. (5.108) for the FM pulse, i.e.,
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single pulse U650 m/s

The formula appears to predict the correct duration for this case.

However, it should be noted that the plot resolution is limited by a numerical

sampling rate of 50 kHz (= Af) for the sake of computational feasibility. This

means that the sampling period is 0.02 ms, which is half the base length of the

pulses shown in Fig. 7.3. (It is for this reason, and not because of the "diamond

theory" of Section 6, that the pulses in Fig. 7.3 appear to have perfectly

triangular shapes.)

The parameter y(T) that appears in Eq. (7.6) deserves some elaboration.

It will be recalled from the discussion following Eq. (5.106) that y M)refers to "the

sample standard deviation, i.e., the root mean square average of the flutter

process y(t) during the specific interval Iti< T/2 after subtracting the mean

value over that same interval". That discussion also pointed out that

Y(" = Yrms. Thus, although Fig. 7.3 specifically assumes Cyrms = 0.5 cm/s, this

does not necessarily imply that cy(T) = 0.5 cm/s. In fact, for the duration

T = 505.62 ms it turns out that cy?.[) . 0.554 cm/s, which is higher than CYrms
by a factor of 1.1086. The reason is that the duration T = 505.62 ms is enough

to encompass slightly more than one full sawtooth of Fig. 7.2, with the result that
it includes a few extra samples of the y(t)curve near its peaks. Thus, as viewed

through the sonar transmission's "window", the value of y(t) is not exactly

uniformly distributed; it has an increased likelihood of being near its minima and

maxima. This makes y(T) slightly larger than Yrms and, therefore, makes cy(

slightly larger than Cyrms.

When the flutter strength is increased from Cyrms = 0.5 cm/s to the larger

value CYrms = 2 cm/s, while keeping the duration of the sonar transmission at

T = 505.62 ms, the effect of flutter becomes more visible, as shown in Fig. 7.4.
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FIGURE 7.4
FLUTTERED AND COMPRESSED PULSE FOR CYrms =2 cm/s,

FOR 505.62 ms TRANSMISSION, 50 kHz BANDWIDTH
LINEAR FM (UPPER) AND RANDOM HOPCODE (LOWER)

For the stepped-linear FM case the fluttered and compressed pulse has

been elongated to about four times its unfluttered duration. The predicted

duration from the formula of Eq. (7.6), as indicated by the "dumbell" symbol,

agrees with the visible duration. (With Cyrrms = 2 cm/s, the value of cy(1) is still

larger by the factor 1.1086, i.e., cyST) - 2.217 cm/s.) Since the pulse

compression filter uses a normalized CAFS waveform as its replica, the pulse

energy has to be preserved; this means that the root mean square amplitude

has to drop to about one-half of its original (unit) value. The plot is roughly

consistent with this prediction.

For the random hopcode the effect is different. There is a central pulse

(upside down in the plot) whose duration is still the same as for the unfluttered

case, but its amplitude has been reduced to a level that is roughly comparable
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to that of the upper plot (i.e., of the stepped-linear FM case). This means that

energy of the central pulse must have diminished.

Figure 7.5 shows the result of increasing the flutter strength to

CYrms = 5 cm/s (for which cy( = 5.543 cm/s):
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FIGURE 7.5

FLUTTERED AND COMPRESSED PULSE FOR CYrms = cm/s,
FOR 505.62 ms TRANSMISSION, 50 kI-z BANDWIDTH

LINEAR FM (UPPER) AND RANDOM HOPCODE (LOWER)

The pulse duration formula (as depicted by the "dumbelP") continues to
give the correct answer for the FM pulse. Furthermore, the pulse energy is
confined to the central zone as the theory of Section 5 predicted. The pulse is
elongated by a factor of about 9.6 relative to its unfluttered length, implying (by
energy conservation) that the average amplitude must be divided by V9.6,
which gives the value 1 /9b.6 = 0.323. This is in visible agreement with the plot.
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For the case of the random hopcode, the central pulse (shown upside down)

retains its short duration, but loses so much energy that it almost disappears in

the "self-noise" that is caused by energy leakage into the central diamond. (It

will be recalled from Section 6.8 that the energy in the random hopcode case is

distributed in a diamond pattern whose span is twice the chip duration, i.e., 2 X

3.18 ms = 6.36 ms. If the plotting boundaries of Fig. 7.5 permitted the entire

6.28 ms span of the central diamond to be seen, the triangular pattern of "self-

noise" energy would be visible.

Figure 7.6 shows the effect of increasing the flutter strength to 20 cm/s

(for which - 22.17 cm/s). The FM pulse duration formula still works and

the central diamond pattern of the random hopcode pulse is now clearly

evident.
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FIGURE 7.6
FLUTTERED AND COMPRESSED PULSE FOR CYrms = 20 cm/s,

FOR 505.62 ms TRANSMISSION, 50 kHz BANDWIDTH
LINEAR FM (UPPER) AND RANDOM HOPCODE (LOWER)

Figures 7.4, 7.5, and 7.6 confirm much of the theory developed in
Sections 5 and 6 for predicting the pulse distortion due to flutter. However, the

156



plots have also revealed an aspect of behavior not obvious from the formulas:
A central pulse often persists, with the original unfluttered duration but
weakened in amplitude, until it is obscured by the energy that has leaked to the
surrounding interval. Actually this behavior is consistent with the narrowband
versus wideband modulation theory that was discussed in the pure tone
spectral spreading discussion of Section 3.1.6. It will be recalled from that
discussion that very weak flutter merely adds a pair of sidebands to a pure tone
transmission, and only reduces the pure tone's amplitude to the extent needed
to supply energy to the sidebands. The central tone remains until the flutter
becomes strong enough to produce one or more cycles of phase shift. It is only
after this strength of flutter is reached that one can express the fluttered
spectrum in terms of the probability distribution of the normalized frequency
deviation y(t) (such as was done in Eq. (3.31), for example, which was actually
an application of Woodward's Theorem; see Blachman and McAlpine, 1969).

However, our computer simulation example uses a stepped-linear FM
waveform or a random hopcode waveform, not a pure tone. Nevertheless,
Section 5 has established that for a linear FM wave burst the shape of the
fluttered and compressed pulse, as viewed in the time domain, matches the
shape of the spectrum of the flutter-induced phase deviation process.
Furthermore, that phase deviation spectrum is not much different from what it
would be for a pure tone transmission (assuming the FM wave burst has modest
bandwidth). Thus, the fluttered and compressed pulse should display a central
"carrier" pulse plus "sidebands" until the flutter-induced phase deviation
exceeds one full cycle (21r radians). For the random hIopcode the situation is
similar, except that the flutter process is effectively time scrambled (see
discussion at the end of Section 6.5). The time scrambling spreads out the
sideband spectra of the phase deviation process, but the "carrier" pulse plus

"sidebands" interpretation still applies for the case of weak flutter.

Figure 7.4 best illustrates this behavior. Since it assumes CYrms = 2 cm/s,
the plot of e(t)in Fig. 7.1 has to be scaled by 0.4, whereupon it is seen that E(t)
swings between approximate limits of -1.2 and +0.6 jis. A rough estimate of the
flutter-induced phase deviation can be obtained by multiplying e(t) by fo and
3600, where fo is the center frequency (200 kHz for our example). This implies
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a phase deviation swinging between approximate limits of -860 and +430,

which is enough to weaken, but not destroy, the central "carrier' pulse. Indeed,

Fig. 7.4 clearly shows the central pulse, only slightly attenuated, for both the

stepped-linear FM waveform (upper) and random hopcode (lower, upside

down).

However, in Fig. 7.5 the flutter strength is Cyrms = 5 cm/s, so that the E(t)

plot of Fig. 7.1 is correct as it stands, swinging between limits of -3 and +1.5 p.S,

and giving a phase deviation that swings between approximate limits of -2160

and +1080. This is almost a full cycle of phase deviation, which is enough to

severely attenuate the central pulse. In fact, the bottom plot of Fig. 7.5 shows

that the central pulse has been attenuated to tess than 20% of its unfluttered

amplitude. In the upper plot (for the stepped-FM) a central pulse of comparable

size may be present, but the closely pecked concentration of sidebands has

obscured it. In Fig. 7.6, for which the flutter strength has been further

quadrupled (causing the phase deviation to swing between approximate limits

of -8640 and +4320), the phase deviation is sufficient to be characterized as

wideband FM, so that no true central pulse remains.

Finally, it should be noted that the "energy loss" formula of Eq. (6.84)

does not apply to our computer simulation example, because the flutter was not

strong enough, even at Cyrms = 20 cm/s, to spread the chip spectra beyond their

band limits. Thus, as Fig. 7.6 shows, the pulse energy remained within the

central diamond. It would have required a very large magnitude of flutter to

spread the chip bandwidths significantly beyond their limits, and it was not

considered appropriate to do so in our example. If the center frequency chosen

for our example had been much higher, Eq. (6.84) might have had an effect at

lower, and more realistic, levels of flutter.

7.4 EFFECT OF SHORTENING THE PULSE DURATION

With Fig. 7.6 as the starting point, and keeping the flutter strength at

CYrms = 20 cm/s, it is interesting to see what happens when the sonar waveform

pulse duration is shortened from 505.62 ms to 52.02 ms, while keeping the

bandwidth at 50 kHz. This means that the time-bandwidth product is reduced
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from 25,281 to 2601. (Note that each of these time-bandwidth products is the

perfect square of an odd integer, as required by our formula for the hopcode

waveform that is given in Section 6.1 Within that requirement, these values are

the closest approximations to a 10:1 geometric progression.) Figure 7.7 shows

the fluttered and compressed pulse magnitudes for this shorter duration.
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FIGURE 7.7
FLUTTERED AND COMPRESSED PULSE FOR CYrms 20 cm/s,

FOR 52.02 ms TRANSMISSION, 50 kHz BANDWIDTH
LINEAR FM (UPPER) AND RANDOM HOPCODE (LOWER)

As indicated by the dumbbell (for the stepped-linear FM case), the

duration formula of Eq. (7.6) continues to give the correct answer. The
compressed pulse shows only a 1.5X elongation due to flutter, as compared to
the 35X for Fig. 7.6, even though the flutter is the same. This happens because

cy'aT) drops to 3.20 cm/s for the 52.02 ms window. This dramatic reduction
occurs because, as shown in Fig. 7.1, FE(t) has a broad plateau at the origin,

which is precisely where the sonar waveform is centered. When the duration T
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was 5,_. -.2 ms, it encompassed one positive-valued plateau and two negative-

valued cusps of e_(t). However, now that the duration has been reduced to

T = 52.02 ms it encompasses only the central plateau, where E(t) is virtually

constant. In fact, when the y(t) plot of Fig. 7.2 is viewed through this 52.02 ms

window, the very small values of y(t) that are seen there span only about 16% of

the full range of y(t). Thus y(T) is only about 16% Of CYrms, i.e., it is only

3.20 cm/s.

Figure 7.8 shows what happens when the flutter c(t))of Fig. 7.1 is shifted

by one-half the flutter period TE, so that the 52.02 ms duration T of the sonar

waveform captures a cusp of r_(t)instead of a plateau.
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FIGURE 7.8

FLUTTERED AND COMPRESSED PULSE FOR cyrms " 20 cm/s,
FOR 52.02 ms TRANSMISSION, 50 kHz BANDWIDTH

LINEAR FM (UPPER) AND RANDOM HOPCODE (LOWER)
WITH THE FLUTTER SHIFTED TO CAPTURE A CUSP OF c(t)
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Now cy (T) is 31.9 cm/s which is 160% of CYrms, not 16%. Since the

52.02 ms duration straddles a cusp of E(t), it straddles a pair of maxima and

minima of y(t), which explains why cy(T) is so large. It also explains why the

(upper) FM pulse of Fig. 7.8 has two distinct peaks: As viewed within the

52.02 ms window, y(t) appears to be bimodally distributed, with peaks in its

probability distribution at the maximum and minimum values of y(t). Thus the

fluttered and compressed pulse, which mimics the probability distribution of y(t)

(using the results of Section 5 for the FM waveform; see Eq. (5.105)), must show

the same bimodal behavior.

It is noteworthy that the (dumbbell) duration formula of Eq. (7.6) continues

to give the correct result for the (upper) FM wave in Fig. 7.8, even for this

seemingly pathological "cusp" case. The fluttered and compressed duration in
Fig. 7.8 increases to about 4X what it was in Fig. 7.7, merely because the sonar

waveform caught the flutter c(t) at an inopportune time, when the equivalent

observer velocity cy(t) was undergoing a dramatic sign reversal at a cusp of

e(t). It is also interesting that no central peak is visible, either in the upper (FM)
case or the (lower) random hopcode case. Apparently the bimodal distribution

of y(t), which can be characterized as upward Doppler shift followed
immediately by downward Doppler shift, kills the central "carrier" pulse rather

efficiently.

Figure 7.9 shows what happens when the sonar waveform duration is

shortened to 4.5 ms, but the flutter strength is increased to the rather extreme

value of CYrms = 100 cm/s. For this figure, E(t) is shifted back to its origina!

position, so that a plateau is captured rather than a cusp. The duration formula
(dumbbell) still works; however, it should be noted that for this case the flutter

does not elongate the pulse significantly. Although the the root mean square
flutter strength is CYrms = 100 cm/s over the long term, the windowed value is

only cy() = 3.20 cm/s, because of the very short duration and the fact that F(t)

is caught in a broad plateau.
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Notice that the Pulse has been delayed by about one-third of a
millisecond. The reason is that the very brief sonar waveform samples only the
central portion of the (t) plot of Fig. 7.1 (which must be scaled by 20X to
account for the fact that cyns = 100 cm/s instead of 5 cm/s). Thus, the time axis
perturbation 0(t) is aPproximately equal to 20 X 1.5 As = 0.035 ms during the
4.5 ms duration of the sonar waveform, which agrees with what is seen inFig. 7.8.

Figure 7.10 Shows what happens when F(t)is time shifted so that a cusp,
instead of a plateau, is captured by the 4.5 ms duration. In this case the flutter-
induced pulse elongation is greater because cyT = 172 cm/s.
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FLUTTERED AND COMPRESSED PULSE FOR CYrms = 100 cm/s,
FOR 4.5 ms TRANSMISSION, 50 kHz BANDWIDTH

LINEAR FM (UPPER) AND RANDOM HOPCODE (LOWER)
WITH THE FLUTTER SHIFTED TO CAPTURE A CUSP OF e(t)

_(T)

Despite the extremely large value of cy., , the pulse is only elongated
3.4X due to the flutter, in the FM case. Although y(t) has a bimodal distribution

(since a cusp of e(t)is captured), the flutter is simply not strong enough to kill the

central "carrier" pulse, which appears with approximately the same amplitude in
both the FM (upper) and random hopcode (lower) case. In contrast to Fig. 7.9,
the peaks are shifted to the left because a negative cusp of E(t) is captured,

rather than a positive plateau.

7.5 SECTION SUMMARY

The computer simulation studies of this section are in confirmation of the

theoretical results of Sections 5 and 6. The pulse elongation formula of
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Eq. (7.6) for the stepped-linear FM case, which appeared originally as

Eq. (5.108) for the continuous linear FM wave burst, has been shown to be an

accurate predictor in a variety of c&cumstances, with no failures having been
_(T) (is nrdcd i

discovered. In particular, the incorporation of -y, (first introduced in

Eqs. (5.105) and (5.106)) into the formula in place of Yrms was shown to be not

only valid, but essential. The studies also clarify the behavior of the central,

narrow pulse in the case of weak flutter, for which the theory had been rather

sketchy.

The computer simulation also helps to answer the question of whether a

random hopcode can ever perform better than an FM wave burst in the

presence of flutter. The answer, it appears, is a qualified "no". To the casual

observer, Fig. 7.4 might suggest otherwise, since the compressed pulse of the

random hopcode (the lower plot, upside down) gives a pulse that is

uncontaminated by nearby sidelobes. In fact, the random hopcode might

possibly be better for distinguishing a weak target at almost the same range as

a strong target, and it might permit more precise estimates of target range.

However, assuming that detection of targets in noise is the prime consideration,

the concentration of sidelobe energy around the main pulse (in the FM case)

can only help, not hinder, the receiver detection performance.
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8. FINAL RESULTS AND CONCLUSIONS

Due to the mathematical complexity of this report, it seems wise to restate

the principal results in a more streamlined way, even at the risk of being
repetitious. The summary presented below does contain some new mathe-
matical developments, but the general intent is to provide a "short story" version

of the report. For more details the reader is referred to the main body of the

report. In some instances, such as in Sections 8.3 and 8.6-8.8, the previous
results are brought together in a new way with the benefit of hindsight.

8.1 BASIC CONCEPTS

Flutter is defined as a rapidly fluctuating perturbation in the time axis of

the sonar echo, such as might be caused either by propagational instabilities in
the medium, by sonar platform vibration or, perhaps, by target motion. This

distortion can impair the performance of a high resolution sonar that is designed

to do pulse compression filtering in cases where the transmitted pulse
waveform has a long duration. For some object detection applications, long

duration waveforms may be desirable. (In the context of this report, a high
resolution sonar is assumed to operate at a range of 10-1000 m and at a

frequency in the range 25-500 kHz.)

As set forth in Sections 1 and 2, the goal of flutter analysis is to

determine how much reduction there will be in the processing gain of the
sonar's pulse compression filter, in typical flutter environments. The
processing gain can be calculated by the approximate formula

Proc. Gain =_ 5 loglo[T] , (8.1)

where T and Tpc denote the effective pulse duration before and after pulse

compression (where "pulse" means the sonar echo of an ideal point target, in

this context). As discussed in Sections 2.3.4 and 2.7, this formula only

measures the insertion gain of the pulse compression filter; furthermore a
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multiplier value of 4 rather than 5 would give a better approximation. (The value

5 was selected to conform with tradition.)

The pre-compression pulse duration, T, is the same as the duration of

the transmitted sonar pulse. Time-bandwidth product theory tells us that the

post-compression pulse duration, Tpc, cannot be smaller that the ideal value

1.5/Be, where Be is the effective bandwidth of the sonar pulse. If the flutter

merely elongates the compressed pulse, then it is appropriate to express the

performance deficit as a reduction in processing gain, relative to the ideal case.

Flutter Loss -ý51ogjo(T)- 51o jo- T-11

5 logio[ T- ] (8.2)

8.2 HOW TO QUANTIFY FLUTTER

Several ways to quantify flutter have been introduced in Section 3.

Flutter is defined mathematically in terms of the perturbation E(t) of the time-axis

variable or, equivalently, in terms of its derivative y(t) = t(t). Thus, e(t) is

expressed in units of time, but y(t) is dimensionless. Non-fluctuating

components of E(t) are irrelevant, since any component that is constant during

the transmit/receive period produces only a trivial time displacement, and any

linearly time varying component produces a steady Doppler effect.

(Presumably the sonar can compensate for steady Doppler effects, by using a

bank of Doppler channels if necessary.) It follows that the flutter will have no

significant effect unless y(t) fluctuates. This fluctuation can be characterized in

terms of its standard deviation, denoted Yrms-

Unfortunately Yrms does not adequately predict the corruptive effect of

flutter, since it reveals nothing about the rate of fluctuation. For example, if y(t)

fluctuates so slowly that it remains essentially constant during the transmitted

pulse duration, then there will be no significant spreading of the compressed

pulse no matter how large Yrms is over the long term. A more useful measure is
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ya ),the sample standard deviation of y(t) within the duration T of the sonar
transmission. (The notation ) has been introduced in Section 5.11, in the
context of analyzing flutter effects upon a linear FM pulse.) The number y
measures the net amplitude of flutter components that are rapid enough to do
significant damage during the transmitted pulse duration T. One would have to

measure y(T) experimentally for several different values of T in order to make a

general assessment of a particular flutter environment.

A more scientific way to assess a particular flutter environment is to do a
sperntral analysis of the time axis perturbation e(t) or its derivative y(t). If the
fluttbr is a stationary random process it can be characterized by a power

spectral density S,(f) or, equivalently, Sy(f) = (27uf) 2 Sj(f). Either spectrum

can be me,.sured experimentally. Dependence of the flutter's spectral

characteristics upon other parameters, such as temperature gradients, sonar

depth, sonar platform speed, or turbulence in the medium, can also be studied.

If the power spectral density Sy(f) is known, one can predict the size of

y by computing the square root of E (-2), where y is the result of subtracting
the running average from y(t), i.e.,

t+T/2

W(t) = y(t) - -- y(t) dt. (8.3)TJtT/2

This equation implies that the quantity y(t) is produced from y(t) by a linear,

time-invariant transformation whose impulse response is 5(t)-T-1 l-(t/T). The
Fourier transform, I - sinc(Tf), is the system transfer function that describes this

transformation in the frequency domain. It follows that yP) can be estimated as

Y e E(ry) = - sinc(Tf)]2Sy(f)d , (8.4)

which provides a handy formula for computing typical values of y(T for arbitrary

duration T of the transmitted pulse, in terms of the flutter spectral density Sy(f).
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Although the spectra SE(f) and Sy(f), together with the overall amplitude

Yrms and the more specific amplitude y tI), are all very effective measures of the

flutter environment, it is often useful to describe the flutter in terms that are more

readily visualized. For example, it is helpful to have a graphical depiction of the
flutter as a function of time, because it allows one to imagine the dynamic

processes that could have caused the flutter. The most easily understood visual

representation of flutter would be plot of the time axis perturbation e(t). But the

amplitude of E(t) is not a very good indicator of the potential for sonar

impairment, without taking account of the spectral distribution. The variable y(t)
would be a better choice in that respect, especially since one can visually
ignore oscillations whose periods are much longer than hypothetical durations

of sonar transmissions. The value of y(t) also has a tangible meaning: It
indicates the percentage deviation in the instantaneous frequency of a pure

tone.

However, the dimensionless nature of y(t) makes it too abstract. A

compromise is to plot cy(t), where c is the speed of sound. The distinction
between y(t) and cy(t) is just matter of scale, but cy(t) has a physical
meaning that is easier to visualize. As discussed in Section 3.1.3, cy(t) is the

equivalent observer velocity, representing a hypothetical motion of the sonar
platform (at the time of reception) that could have been responsible for the
flutter. Because of this attractive feature, cy(t) has been used frequently in the

main body of the report, for computations as well as for illustrating flutter

dynamics.

8.3 HOW TO PROBE THE FLUTTER ENVIRONMENT

It might seem that a steady, pure tone transmission could be used as a

probe signal to study the spectral characteristics of the flutter environment.

Flutter does, in fact, spread the tone's line spectrum into a power spectrum of
characteristic shape and width. Unfortunately, according to the results of

Section 3.1.6, that spectral shape mimics the shape of the probability density of
y(t), not its power spectral density. For example, if the flutter fluctuations exhibit

Gaussian statistics, as will likely occur over the long term, then the tone's line
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spectrum will be broade-ied into a Gaussian shape. (This linkage between

broadened spectral shape and the probability density of y(t) will apply if the

flutter is strong enough to produce phase deviations of substantially more than

a radian. Flutter that produces only a small phase distortion does n, pose

much of a threat to pulse compression filtering.)

Although the shape of the pure tone's broadened spectrum is too

predictable to provide much useful information, its width is somewhat revealing.

According to Eq. (3.47), the spectral width Bjo obeys the simple law

Bo -- 2 x (i3, or Yrms fo, (8.5)

where F2, F, orfi-t is selected depending upon whether the flutter is

sinusoidal, uniformly distributed, or Gaussian. The parameter fo is the center

frequency of the transmitted pure tone. Thus, the value of Yrms can be deduced

from the pure tone's measured spectral width. However, as noted above, the

value of Yrms is not very useful without additional information as to the spectral

characteristics of the flutter.

There is another drawback to using steady tone transmissions to probe

the flutter environment. Multipath effects are likely to cause wave interference,

thereby putting kinks into the flutter-broadened spectrum. Indeed, it is to be

expected that multipath will have a devastating effect when steady tone

transmission experiments are performed in any environment that resembles the

typical operating scenario of a high resolution sonar.

The story is different for pure tone bursts, however. If a tone burst is brief

enough, multipath effects can be gated out. The received tone burst is then

x(t) = A H(t (8.6)

which can be carrier-demodulated and fed into a phase detector to get the

instantaneous phase deviation 4(t)=2ltfoc(t), from which c(t) may be

computed directly, while the tone burst lasts. However, in order to get an

accurate representation of c(t) the signal must strongly dominate the noise, to a
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much greater extent than is required for normal sonar applications. There are a

number of ways to achieve high signal-to-noise ratios in a controlled

experiment. The best way is to use a one-way transmission path, by putting

either a transmitter or a receiver at the target location. The flutter amplitude will

then be cut in half, but that is easy enough to compensate for in the analysis.

It will usually be necessary to limit the duration of the experimental tone

burst to no more than one or two milliseconds to avoid multipath interference,

and then to allow many hundreds of milliseconds to elapse before transmitting

another tone burst of the same frequency. At best, such a procedure provides a

series of extremely brief glimpses of the flutter process. This is not adequate to

determine S,(f) over the most relevant ranges of flutter frequency. This

limitation can be overcome by using a very rapid sequence of pure tone bursts

of many different frequencies, almost contiguous in time, but with sufficiently

large guard bands between the frequencies that they can be easily separated

by spectral filters at the receiver (or by a computer if the received signals are

recorded for laboratory analysis). With this frequency hopping method, it should

be possible to track the flutter-induced phase variations a!most continuously,

without danger of multipath interference.

It is also be possible to use long duration FM sweeps as flutter probing

signals. In this case pulse compression filtering (i.e., replica correlation) can be

used to isolate the desired signal from spurious contributions due to multipath.

One can then take the Fourier transform of the compressed wave "(t), after

masking it with a suitable window to exclude the effects of multipath, and

compare the result to the similarly windowed Fourier transform of the ideal,

unfluttered, compressed waveform p(t). The computed phase difference then
represents the phase deviation induced by the flutter, as a function of frequency.

This frequency dependence can then be converted to a time dependence,

using the original FM sweep's defining formula (which expresses its
instantaneous frequency as a linear function of time). Thus, one can compute

the instantaneous phase deviation 4(t) due to flutter, as it evolves over the

entire duration of the FM sweep. It is then a simple matter to solve for E(t) in the

quadratic formula
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2r [fo + -Af + .t)Af (8.7)

(See Eq. (5.9)). A phase-unwrapping algorithm must first be applied to 0(t),
but that should pose no problem if the signal level strongly dominates the noise,
which it will in a controlled experiment using a one-way transmission path. This
FM sweep method is roughly equivalent to the aforementioned frequency
hopping method if the frequency hops are done in a linear sequence. However,
the FM sweep method is probably more efficient.

Assuming that a long duration FM sweep has been transmitted, one
might suppose that the flutter spectrum could be estimated directly from the

envelope of the fluttered and compressed pulse p(t), since, according to the
results of Section 5.8,

F0-1 T f --+ -Af t

where T and Af denote the duration and sweep width of the original FM sweep.
This seems to provide a tailor-made picture of the flutter spectrum, through a
simple linear transformation of the independent variable (see Sections 5.8-5.9
for details). However, since the effect of E(t) is felt in the exponent 0(t), this
method will not yield an estimate of S,(f) or Sy(f). In fact, according to the
results of Section 5.9, ý(tf2 will merely take the shape of the probability density
of y(t), as sampled within the duration of the FM sweep. This might be of use in
determining the value of the parameter y(,), but it is not as illuminating as direct
spectral analysis of E(t).

Based upon the foregoing discussion, there are nine steps to successful
experimental evaluation of a given flutter environment, all of which are
important:

(1) Ensure that the signal-to-noise ratio is very high, by using a one-
way transmission path. (Put a receiver or transmitter at the target

position.)
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(2) Transmit continually (if not continuously) in order to sample the
relevant flutter frequencies without aliasing.

(3) Use frequency diversity to avoid multipath interference. Use

either a long duration FM sweep or a rapid-fire sequence of
frequency-hopped tone bursts having discrete, well spaced

frequencies. In both cases the instantaneous frequency of the

transmitted signal serves as an identity tag to indicate exact time of

transmission.

(4) Use a carefully designed test geometry, combined with linear
signal processing at the receiver, to eliminate multipath interference.

For the FM sweep transmission use a pulse compression filter (i.e., a
replica correlator) to shift the multipath effects away from the pulse

center. For the frequency hopping method use a bank of spectral
filters to isolate the tone bursts, theteby eirminating muftipath

interference.

(5) Determine the flutter-induced phase shift at each frequency. For
the FM case, compute a centrally windowed Fourier transform of the

pulse-compressed signal, and then compute its phase for each
frequency. For the frequency-hopped case, simply detect the phases

at the outputs of the filter bank.

(6) Express the flutter-induced phase shift as a function time, 0(t), by

using the time/frequency tagging formula of the original transmission.
(In the FM case, a simple linear formula relates time and frequency.)

(7) Apply a phase unwrapping algorithm to 0(t). Also, subtract any
systematic phase deviations that might have been artificially
introduced by the measuring system. (These systematic phase

deviations can be identified by applying an electronically simulated

test signal that represents the ideal, unfluttered version of the

received signal.)
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(8) Compute E(t) from 0(t). For the FM case, solve Eq. (8.7) for 6(t).
For the frequency-hopped case, e(t)=0(t)/[2x:fot)], where fo(t)

denotes the frequency of the tone burst that was arriving at time t.

(9) Compute an estimate of the flutter power spectral density Sj(f), or

Sy(f).

In any such study it would be crucial to measure and record sonar
platform motions (including vibration) very carefully, as well as target motions,
where applicable. Obviously, one should also measure and record as many
relevant environmental and oceanographic parameters as possible, in order to
develop models for prediction of flutter effects in real sonar environments.

8.4 PRIOR STUDIES OF FLUTTER IN THE PROPAGATION MEDIUM

To our knowledge, neither the FM sweep method nor the frequency
hopping method hav6 ever been used in an experiment to assess flutter in a
high resolution sonar environment. Although acoustic telemetry experiments
have been performed with frequency-hopped transmissions, no published
works were encountered that permitted a scientific assessment of flutter caused
by propagational fluctuations, at the typical ranges of high resolution sonar.

The single frequency tone burst method has been used in many
experiments, to assess fluctuations encountered in ocean sound propagation.
Although amplitude fluctuations have received more attention, phase
fluctuations (due to flutter) have been studied in many of these experiments.
However, due to the large intervals between successive tone bursts (to avoid
contamination by multipath and other problems), none of these experiments has
achieved a sampling rate high enough to assess the flutter environment
properly for high resolution sonar applications, without upward extrapolation to
flutter frequencies of relevance to pulse compression.

As noted in the review of prior experimental studies given in Section 4,
Ewart et al. used tone bursts separated by 15.7 s, Christoff et al. used a 1.0 s
separation, Bartels used a 1 min separation (in a lake environment), and
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Kennedy used a 6 min separation between tone bursts. The study of

Farmer et aL used a binary phase encoded sequence that permitted a

somewhat longer tone burst duration (25.4 ms) to be used, while still guarding

against multipath effects (see Section 4.3 for the details). The transmissions

were repeated five times per second, giving the shortest period (200 ms)

between bursts of any of the reported studies. Even at that highest rate, the

sampling rate is inadequate for our purposes.

The study of Gough and Hayes used a linear FM transmission of 0.8 s

duration, repeated continuously, giving an effective period between

measurements of 0.8 s. At first glance, their probing technique might seem to

be equivalent to the FM probing method described above in Section 8.3.

However, the study of Gough and Hayes was unique among those reported in

the respect that a passive sonar target was used, with a two-way (echo-ranging)

propagation path. As a result, the noise effects (especially bottom

reverberation) were rather substantial. The signal certainly did not dominate

the noise to the extent desired for use of the Fourier transform technique of

Section 8.3.

In all of these studies the investigators apparently assumed that the

phase varied so slowly that relatively long gaps could be tolerated between the

phase measurements. This is unfortunate. In assessing the effect of flutter on a

large time-bandwidth sonar pulse of I s duration (for example) it would be

desirable to know Sc(f) or Sy(f) up to flutter frequencies of at least 100 Hz. In

the reported studies, however, the low sampling rates caused the contributions

of relevant flutter frequencies to be aliased. When the phase was sampled only

once every 20 s. for example, all flutter frequencies higher than 0.025 Hz were

aliased.

Admittedly, in some of the studies (that of Bartels in particular) the flutter

varied so slowly that flutter contributions at frequencies higher than 0 1 Hz were

incunsequential; i.e., they produced too small a phase deviation to have any

effect upon pulse compression filtering. Nevertheless, it would be desirable to

know the shape and rolloff characteristics of S, (I) in order to project the results

to more severe phase deviations that might be encountered at higher sonar
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operating frequencies or longer ranges.

Wherever it was possible to extract and digitize phase data from a

published paper or report of the studies reported in Section 4, an estimate of

Se(f) was made and plotted by the present author. (Since Ewart had already
plotted an estimate of Se(f), with different notation and units, his results merely
needed to be digitized and replotted with different scales.) None of these

computed spectra provided values of Sp(f) at flutter frequencies higher than a

few hundred millihertz, and most were limited to much lower frequencies.
Nevertheless, a simple formula for SE(f) was developed, representing a rough
consensus of the reported studies with extrapolation to the higher frequencies
of interest. Its inverse-cubic frequency dependence was originally derived as
an approximation to Ewart's data. The formula, first expressed in Eq. (4.5), is
repeated here for convenience.

S2-)( Rson ls3 x l0' (8.9)
SE(f =_ 117.2 km ýfl

where Rson represents the sonar range, measured in kilometers. (NOTE:
Remember that the variable f represents flutter frequency, not transmitted
frequency.)

This formula has a number of shortcomings. It is a crude approximation
that fails to take environmental factors into account (it ignores water depth,
turbulent mixing rates, density inhomogeneities, etc.). It is based upon a rather
simplistic upward extrapolation to the higher flutter frequencies, using measure-
ments made at a much lower sampling rate. It fails to diminish rapidly enough

at high frequencies (Section 3.1.4 says S,(f) has to decay faster than f 3 as
f-*oo), and it blows up too fast at the origin (Section 3.3 says it must not grow as

fast as f-3 as f-40). Range dependence was artificially appended, based upon
a heuristic argument that was known to have limitations.

Despite these faults, it is about as good as one can do with the published
experimental data. We hope that it is correct within a couple of orders of
magnitude, over the most relevant range of flutter frequencies (0.01 Hz to
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100 Hz). The formula can be multiplied by (2ntf) 2 to give

S()( 10"12 Rs~ )lif1"l (8.10)
Sy(f) =_ 6.84 km I

which, when substituted into Eq. (8.4), provides a formula for estimating the

value of y0Cr,

Y E _ 6.84 km I- lsinc(Tf)]21l- . (8.11)

The integral fails to converge at the limits ±o0, because of the too-slow

decay of our spectral approximation at high flutter frequencies. In practice,

there must exist some frequency f-a, above which S,(f) decays faster than f 3,

and, equivalently, Sy(f) decays faster than f -. The limits of integration in

Eq. (8.11) can then be collapsed to ±f max, as an approximation. When this is

done, and the variable of integration is changed to x = Tfmax, the result is

+Tfmax [2"
(T) est. 1012 " R(, - sinc(x)]2

- 6.84 km 'fLTfmax I dx (8-12)

Using numerical integration, one can easily verify that the integral goes

rapidly to zero as Tfmx drops below 0.61, and for Tfmax > 0.61 it is well

approximated by the simple algebraic formula [1 + 4.65 logio(Tfmax)] , which

goes to zero at Tfma = 0.61, i.e., at T = 0.61/fmax. Thus,

y(NT) + 4.65 1og10(Tfmax) x106 (8.13)

~iu~maj 6.4 km

except when the term under the first radical is negative, in which case y.()

This says that the relevant flutter amplitude y (T) is essentially zero for a

transmitted pulse of such short duration that none of the significant flutter
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oscillations can complete 61% of a full cycle. This seems quite reasonable.
Moreover, Eq. (8.13) implies that the effective flutter amplitude is proportional to

l4-ogloT for pulses of substantially larger duration. A weakness of the formula

is its dependence upon the somewhat mysterious quantity fma (i.e., the highest

strong flutter frequency), whose value can only be guessed at. Luckily the
formula is rather insensitive to fmax- For example, assuming a desired sonar
pulse duration of 1 s, the leading radical in Eq. (8.13) increases only by a factor

of 3.87 as fmax varies from 1 Hz to 1000 Hz.

Beyond providing a generic formula for S(f£), and the resultant formula
for y (T) that was just derived, the review of experimental studies (of Section 4)
has provided some other interesting results of a general nature. For one thing,
propagational instabilities in the ocean medium never seem to produce a time

axis perturbation E(t) that exceeds a few milliseconds (except for gross, long
range, long term effects due to movement of refracted paths). Furthermore, the

equivalent observer velocity, cy(t), rarely exceeds a few millimeters per

second. The amplitude of cy(t) becomes even smaller when one ignores the
very low frequency components that are unlikely to affect performance of high
resolution sonars. It is also noteworthy that the flutter spectrum, SE(f), never

seems to show a very complex structure (although Ewart was able to discern
tidal effects). This means that simple vth-power approximations should be
adequate for the more extensive studies that might done in the future, assuming
that one or more breakpoints are put into the approximation. (No breakpoint
was used in the crude formula of Eq. (8.9), however, unless one regards fmax as

a breakpoint.)

It shou;d be mentioned that the referenced experimental studies never
mentioned the word "flutter". Instead, they addressed phase and amplitude
fluctuation of transmitted signals. We ignored their amplitude fluctuation data
and divided their published phase fluctuation data by 27tfo to get the time axis
perturbation e(t), where fo denotes the stated frequency of transmission. (One
of the experimenters, Ewart, had already converted his data to a time deviation
c-(t), but he still referred to it as "phase".)

Finally, it should be acknowledged that there is a large body of
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theoretical literature on propagation through inhomogeneous media. It was of

little help in assessing flutter induced by propagational instabilities. The

theoretical results were just too complex, arcane, assumption-dependent, and

inflexible to permit statistical prediction of perturbations in the time axis. It might

be said that one good experimental study would be worth a score of theoretical

papers, especially as regards high resolution sonar operation at short range.

(Others may disagree.)

8.5 FLUTTER DUE TO SONAR PLATFORM MOTIONS

In view of the rather low levels of flutter reported in the experimental

studiids, it appears likely that motions of the sonar platform will cause more

flutter than propagational instabilities in the ocean medium. (This assertion is

discussed more fully in Section 4.9.) This is especially true i, the platform is a

cable-towed or free-swimming body of low inertia. Such a platform may

undergo oscillatory motions due to turbulence effects. Even on more massive

foundations, elasticity of mountings may contribute to platform vibration at high

speeds.

Using plate vibration theory, it has been argued in Section 3.2.3 that any

contributions to S,(f) that are due to elastic platform vibration will roll off

approximately as f-7 at high flutter frequencies. However, i' has also been

argued that rigid body motions due to "white" turbulent forces will produce

components that roll off as f-4. One thus concludes that contributions to S,(f)

that are due to sonar platform motion will probably roll off at least as fast as

contributions due to propagational instabilities. However, at lower frequencies

the platform motional spectra are certain to exhibit irregularities, due to

resonance effects.

Unfortunately, no applicable data were available to assess typical

platform motional amplitudes or spectra under actual operating conditions. A

few measured spectra of sonar platform vibration were discovered, but their

frequency range was too high to be applicable. (This is a bit ironic; the studies

of propagational instabilities were confined to flutter frequencies that were too

low to be applicable.) None of the environmental studies reported in Section 4
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produced platform motion spectra, since they used fixed-position transducers to

avoid any such effects.

8.6 EFFECT OF FLUTTER ON AN FM WAVE BURST: RESULTS

A very extensive theoretical development has been done in Section 5 for

the case in which the sonar uses a linear FM wave burst as its transmitted

pulse. It turns out that the flutter has a very simple effect. The compressed
pulse continues to retain its energy in a closely packed configuration, but

becomes more elongated. Not surprisingly, the elongation increases with the

flutter amplitude. According to Eqs. (5.105) and (5.130), if the flutter is strong
enough to produce wideband phase modulation then the power envelope of the
fluttered and compressed pulse is given approximately by

~(D .. I le I(t, (8.14)P-- I Tfo LTfoJ

where Af, T, and fo are the sweep width, duration, and center frequency of the
FM wave burst that was transmitted. The window function IE(t) is of little
consequence; it takes unit value over the entire domain of the compressed
pulse. The probability density function py((.) merely describes the probability
distribution of values of the flutter y(t) that are captured within the duration T of
the transmitted wave. (The bar over pyO(.) in this approximate formula just
indicates that a slightly "smeared" version of py)(.) is to be used; see

Eq. (5.72) for the details.)

The shape of the compressed pulse's power envelope thus mimics the
probability distribution of the flutter y(t), but only for the limited sample that is

seen within the duration of the transmitted wave. If the flutter has Gaussian
statistics and T is large, then the power envelope of the compressed pulse will
have a Gaussian shape. However, if the transmitted wave is so brief that y(t)

can be approximated by a straight line within the interval 'r, then PM(-) will
describe a uniform distribution, and the energy of the compressed pulse will be
approximately uniformly distributed along the time axis for as long as it lasts. In
any case, the energy of the compressed pulse will remain constant, irrespective
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of the flutter amplitude (because the integral of Eq. (8.14) is always equal to Af).

It follows that the duration of the fluttered and compressed pulse is

determined by the flutter's sample standard deviation y(T). According to

Eq. (5.131), the duration of the fluttered and compressed pulse is

Tpc = (1-)[ +(Tfo)(Y), (6.15)

where c denotes the speed of sound. This expression can be substituted for TrC
in Eq. (8.1) to get the processing gain of the pulse compression filter,

Proc. Gain =- 5 loglo (TAf)KT 0.88dB, (8.16)
[(T Af) + KTj

where the definition of KT is given in Eqs. (5.134) - (5.135), restated here for

convenience,

KT (AI X [650 MSj (8.17)

The parameter KT is a very important measure of the flutter's effect. If the time-

bandwidth product TAf is much smaller than, or much larger than, the critical
value KT, then the processing gain formula of Eq. (8.16) simplifies to

g(TAf) for TAf << KT}
Proc. Gain g(KT) for TAf >> KT (8.18)

where the processing gain function g(.) is defined as

def.
g( = 5 logiocc - 0.88dB. (8.19)

This suggests a simplified version of the approximate gain formula,
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Proc. Gain min( g(TAf), g(KT)}

= g(min{ TAf, KT }). (8.20)

[NOTE: This processing gain formula will always give a slightly larger result

than Eq. (8.16). However, the discrepancy between the two formulas will never

exceed 1.5 dB, and will only get that large when TAf = KT. These assertions

can be proven by use of the algebraic identity

log(min{a,b)) -log(2) < log[ab/(a+b)] < log(min~a,b)), (8.21)

which holds for all positive a and b, and for any base of logarithms.]

The simplified formula of Eq. (8.20) shows that KT acts as a ceiling on
usable time-bandwidth product, insofar as the processing gain of the pulse
compression filter is concerned. As a result, there is also a ceiling on the
processing gain itself. That ceiling is g(KT). To illustrate, let us predict the

ceilings for a sonar whose "Q" is 10 (i.e., fo/Af = 10), in four flutter environ-
ments where the flutter has equivalent observer velocities given by c y -=0.01,
0.1, 1, and 10 cm/s. For these four cases, Eq. (8.17) gives the usable time-
bandwidth product ceilings as KT = 6.5 X 105, 6.5 X 104, 6500, and 650. The
corresponding gain ceilings are g(KT) = 28.2, 23.2, 18.2, and 13.2 dB.

One important use of the processing gain formula of Eq. (8.20) is to
determine the effect of increasing the transmitted pulse duration T, in a specific
operating environment. The answer is simple: The processing gain increases
5 dB for each decade factor of T, until it reaches the gain ceiling. A slight
complication is that the gain ceiling g(KT) is a moving target, due to the
T-dependence of KT. Regardless, the ceiling is reached when
g(TAf) = g(KT), i.e., when the time-bandwidth product reaches the critical

value KT. Using the definition of KT given 'n Eq. (8.17), it follows that the gain

ceiling will be reached when the equation
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T (fo)x[65Lo (8.22)fl cYc0,

is satisfied. Although T appears on both sides, the equation is very simple to

solve by iteration. (A good starting guess is T = 1 s.)

The iteration converges quickly because of the very mild dependence of
M upon T. An example will illustrate: We assume a high resolution sonarYCF

operating at a range of Rson = 300 m, with a center frequency of fo = 200 kHz.

In the absence of any real environmental data, we use the generic formula of

Eq. (8.13) to predict the flutter amplitude y(T) attributable to propagational

instabilities, for which we assume that fmax = 100 Hz. (Our example fails to take

account of platform motion, which has been alleged to be a more serious

source of flutter than the propagation medium.) The iteration proceeds as

follows: After selecting a starting value of T = 1 s, we use Eqs. (8.13) and (8.22)

to calculate the next iterated value T = 3.22 s, and then repeat the process to

get T = 2.91 s. Convergence is declared at the next value, T = 2.93 s.

In practice, one ought to use y(T) data that are appropriate to the actual

flutter environment, if such data are available. This might entail the use of the

integral formula of Eq. (8.4), if the data are in the form of flutter spectral

measurements. As discussed in Section 5.14, the parameter y() increases

with T (maybe not monotonically) until it reaches its long term limit, y(-) = Yrms-

In moderate flutter environments this limit will likely be approached before T

gets large enough to satisfy Eq. (8.22). If so, the processing gain ceiling is just

g(K.), where K. is the result of setting yr = Yrms in Eq. (8.17).

The T that satisfies Eq. (8.22) might be termed the maximum flutter-safe

interval, denoted Tmax. This parameter makes it possible to describe the effect

of flutter in a very concise way: For a pulse compression sonar that transmits an

FM wave of duration T < Tmax, flutter will have little or no effect upon pulse

compression. Contrarily, if T > Tmax then the processing gain of the pulse

compression filter will already have hit the gain ceiling, and will be limited to

what it would have been for T = Tmax. Note that Tmax depends only upon the
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flutter environment and sonar center frequency, not upon the sonar's
transmitted bandwidth, or any other sonar parameters. In the example just
described the maximum flutter-safe interval was Tmax = 2.93 s. With a
transmitted bandwidth of Af = 50 kHz, for instance, the processing gain ceiling
would have been g(KT) = g(TmaAf) = 23.8 dB.

[NOTE: Using computer simulation with FM wave signals, Bartels (1989)

demonstrated that vibration-induced flutter would elongate the compressed
pulse, giving it a characteristic shape and a duration that was roughly
proportional to the root mean square vibration amplitude. This result inspired
the theoretical work done by the present author, leading to the Tpc formula of_(T)
Eq. (8.15) with yrms in place of ycy . In the process of carrying out more
extensive computer simulations of the type presented in Section 7, it was
determined that yrms was an inadequate descriptor of flutter. This led to the
definition of yG), and to the various other results presented in this report.]

8.7 FM WAVE CASE WITH A NON-ADAPTIVE DETECTOR WINDOW

When the sonar uses an FM wave burst as its transmitted waveform, the
results of the previous section can be correctly applied only if the detector
readjusts its integration window to match Tpc, the duration of the fluttered and
compressed pulse. To accommodate different flutter environments the detector
would have to adapt its integration window to match Tpc. Indeed, it would have

to be equipped with some means for sensing the flutter environment (including
platform motion) before adapting to it. This adaptive behavior requires a degree
of sophistication that may be hard to achieve in many circumstances. For that
reason it is of interest to examine the case where the sonar uses an integration

window of fixed duration Tdet.

Suppose Tdet is designed with a somewhat elongated pulse duration in
mind, based upon a presumed "worst case" flutter scenario, with the
corresponding value of processing gain computed by Eq. (8.1) with Tdet
substituted for Tpc. If the flutter turns out to be weaker, so that the compressed
pulse duration TPC is actually smaller than Tdct, will the processing gain be
degraded? The answer is "no." The detection performance will be just as good
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with a shorter pulse. All of its energy will still be captured within the window, so

that the probability of detection (and false alarm rate) will be the same as if the

pulse duration had been as large as anticipated.

This means that the processing gain of the pulse compression filter, to

the extent that it is exploited, is given by the approximate formula

Exploited Proc. Gain = 5 log o[T] (8.23)[Tdetl '

for Tdet>Tpc. Theoretically the pulse compression filter has the larger value of

processing gain expressed by Eq. (8.1), but some of it has been sacrificed by

the use of too long an integration window. There are two compensations for

that sacrifice. (1) The detector window does not have to be adaptive, and

(2) the detection performance is stabilized with respect to variations in
flutter amplitude, so long as it remains weak enough that Tdet>Tpc.

The flutter might turn out to be stronger than anticipated, so that the

actual compressed pulse duration Tp is larger than Tde. Will the processing

gain be degraded if that hapr3ns? The answer is "yes", because some of the

pulse energy will spill outsid 3 the detector's integration window. Only a fraction

of the pulse's energy will h'e captured, that fraction being equal to

k t. Tdet (8.24)

when Tdet<Tpc. One might therefore suppose that the effect would be to

subtract 10 loglo(k-]) from the processing gain formula of Eq. (8.23). However,

the spillover loss is not quite that large because there are some extra

opportunities for detection as the integration window slides along the elongated

pulse. Indeed, the number of "distinct" opportunities for detection is k-1, so the

required probability of detection for each opportunity is only [I - (_ -Qd)k],

where Qd is the overall probabiiity of detection. Therefore, using the results of

Section 2.7, it is a straightforward algebraic exercise to work out the spillover

loss in dB. The result is
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[X([1-{(1-Qd)k] ,FARBeTdeJ (8.25)Spillover = 1 0 Iogb0 -kX (Qd,FARBede (

when Tdet < Tpc, where X(.) denotes the function defined in Eq. (2.35) and k is

as defined in Eq. (8.24).

It is possible to find a simple approximation for this rather complicated

formula, in the same manner that was used to attack the somewhat similar

formula of Eq. (2.36). The approach is to consider a representative example,

and then generalize. The example will be the same one that was used in

Section 2.7, with a slight alteration. Thus, it is assumed that the sonar uses a

transmitted pulse of effective bandwidth Be = 60 kHz and duration T = 500 ms,

giving a time-bandwidth product of 30,000. The desired false alarm rate is

specified as FAR = 0.02/s, and the desired detection probability is Qd = 0.8.

Under ideal circumstances, the pulse compression filter should compress the

duration to 1.5/Be = 0.025 ms. Here is the alteration: It has been decided to

use a fixed integration window ten times that long, to accommodate a possible

elongation due to flutter. Thus, Tdet = 0.25 ms.

The next step is to compute the spillover loss for a set of imperfectly

compressed pulse durations Tpc that exceed this value of Tdet. In particular, we

choose to perform the computation for Tpc = 0.75, 2.5, 7.5, and 25 iris. Such

durations might be expected for cases of increasingly severe flutter amplitude

(very severe!). According to Eq. (8.24), the corresponding captured-energy

fractions are k = 0.33, 0.1, 0.033, and 0.01. By using the computational routine

outlined in Section 2.7 to compute the X function, one can then compute the

spillover loss by Eq. (8.25). The resulting values of spillover loss are,

respectively, 3.39, 7.22, 10.87, and 14.84 dB.

These values are well approximated by the simple formula

Spillover = 7.21oglO(k-') = 7 .2 logo -T--pc, 1(8.26)
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which is somewhat smaller than our original guess of 10 loglo(k-1).

This completes the derivation of an approximate formula for spillover

loss. It turns out that the approximation holds fairly well when the sonar

parameters are varied over a wide range of realistic values for high resolution

sonar applications. (The same assertion was made in defense of Eq. (2.37),

which was derived in a similar fashion.) The spillover loss must be subtracted

from the processing gain formula of Eq. (8.23) when the detector's integration

window is too short; i.e.,

Exploited Proc. Gain =-5 1ogo[ Tj - 7.2 logioETc (8.27)[Tdetl Lldet J

for Tdet< Tpc

8.8 EFFECT OF FLUTTER ON A HOPCODE BURST: RESULTS

As defined in Eq. (6.3), a hopcode burst is of the form

x(t) = TN 'Xn(')l ei2tfot, (8.28)
jn = N'Xn j

consisting of N "chips", packed end to end with continuous phase, with each

chip being a tone burst of duration T/N,

xt(t) = T 2-f-t " (8.29)

The following definitions apply:

T = duration of entire hopcode wave burst,

1fo = center frequency,

N = 2N'-I = number of chips (an odd integer),
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tn = nT/N = center point of the nth chip,

fn = Q(n) N/T = baseband frequency of the nth chip,

Af = N2/T = total band occupancy, and
U(n) = an arbitrary mapping of the integers

(-N', ... -1, 0, 1,... , N'} onto themselves.

The integer mapping U(n) is the "code" of the hopcode waveform, which is

normally selected to scramble the order of frequencies. If N is large, then the

spectrum of x(t) will be quite flat over a band of frequencies centered at fo, with

bandwidth Be = Af = N 2/T, so that the time-bandwidth product is

TAf = N 2 . (8.30)

Th,- trivial code U(n)= n gives a stepwise-linear FM wave burst that is a

good approximation to a simple linear FM wave burst. In fact, during

preparation of the computer simulation studies for Section 7 it was determined

that a stepwise-linear FM wave burst could be substituted for a true linear FM
wave without significant error in the results. Thus, for the non-scrambled

mapping Q(n) = n it may be assumed that all of the previous results for FM

waves are applicable to the prediction of flutter effects, including the pulse

elongation and processing gain formulas of the previous section.

The results are quite different when 0(n) is a random mapping of the

integers that scrambles the frequency order. That case must be explained in an

entirely different way. It is best to begin by reflecting upon the general nature of

the pulse compression filter. All of the signal types considered in this report are

constant amplitude, flat spectrum (CAFS) signals; consequently, the pulse

compression filter (i.e., replica correlator) can be regarded as a bandpass filter
that has a constant gain across its passband. The only thing that makes it

different from an ordinary bandpass filter is its phase response. Ideally, its
phase response is supposed to cancel out the phases of the various frequency

components of the incoming waveform (which is assumed to be a sonar echo
from an ideal point target), leaving a sum of in-phase frequency components

that add up to form a pulse of duration 1 5/IBe= 1.5T/N 2 . For purposes of our
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analysis, this pulse will be called the narrow pulse.

However, if there is a severe, random discrepancy in the phase response

of the pulse compression filter, such as might be caused by very strong flutter,

then the pulse compression filter will actually stretch out the pulse, rather than

compress it. The output will look like a random noise burst that spreads over a

time interval of width 2T, but it will have a triangular envelope. (This happens

because the output is the convolution of the input and impulse response, both of

which are CAFS waveforms of duration T that occupy the same band but with a

random phase relationship.) This triangular noise burst will be referred to as

the fat diamond. Because of its triangular shape, the effective duration is 5/9 of

the interval width (see Eq. (2.6), i.e., the effective duration is 1. 1 IT.

If the flutter is moderate, but not too strong, it will apply random phase

factors to the individual chips of the hopcode burst, but without producing

enough Doppler effect to shift the frequencies of the chips beyond their natural

borders. Under these circumstances, it has been established in Section 6.4 that

the output pulse energy will be distributed mainly within a central diamond that

is spread over a time interval of width 2T/N. This central diamond is a kind of

time-compressed version of the fat diamond described above, with the same
kind of triangular shape. Thus, the central diamond has the appearance of a

noise burst with a diamond-shaped envelope. Its effective duration is 1.1 IT/N,

which is 5/9 of 2T/N.

One can get a pictorial view of these diamond-shaped envelopes by

referring to Fig. 6.2. The central diamond is the one in the middle, labeled Do(t).

The fat diamond is the full aggregation of all of the diamonds shown in the

figure. (The "other" diamonds, labeled Dn(t), are of interest only in the

theoratical development of Section 6.) The central pulse is not shown in the

figure.

As the flutter amplitude increases from negligible to moderate to very

strong, the fluttered and compressed pulse undergoes a metamorphosis,

changing from a narrow pulse of duration I.5T/N 2 , to a central diamond of

width 2T/N, to a fat diamond of width 2T. This change is gradual, but it is not
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achieved by time-stretching as one might expect. Instead, energy is

mysteriously transferred from one structure to the next. Here is the way it works:

In the absence of flutter, the narrow pulse stands alone. As flutter is introduced,

the narrow pulse diminishes in amplitude without getting any wider. The

missing energy reappears in the central diamond, which begins to look like a

carpet of sprouting grass that grows in amplitude as the narrow pulse

relinquishes its energy. Eventually, the narrow pulse shrinks to invisibility.

Then, as the flutter is increased further, the central diamond starts to lose its

energy to the fat diamond, by a similar process.

Section 6.7 addresses the loss of energy from the central diamond to the

fat diamond, as a function of the flutter amplitude. However, Eq. (6.85) shows

that no significant energy will be lost to the fat diamond unless there is an

extraordinarily large combination of flutter amplitude, system "Q" (i.e., fo/Af),

and time-bandwidth product. (This conclusion was also borne out by the

computer simulations of Section 7.) Thus, the transfer of energy from the

narrow pulse to the central diamond is more important. The fat diamond can

usually be ignored completely.

Unfortunately, there is no formal theoretical result that quantifies the
narrow pulse's amplitude loss as a function of flutter amplitude. There are a

couple of informal results, however. The first informal result predicts that a

substantial portion of the energy in the narrow pulse will be lost to the central

diamond when the value of flutter amplitude y M gets as large as (foT)-'.

[The "derivation" is as follows: Since the formation of the narrow pulse is

dependent upon a coherent summation of equal contributions from the chips,

the process will fail if there are random phase deviations in those contributions

(in fact, this is what creates the central diamond). The phase deviation is

approximately 27EfoE(t), since the tone burst (chip) frequencies are centered

around fo. If E(t) deviates over a span of at least fiI during the transmission

duration T, so that the phase deviation 2nfoE(t) varies over a span of 27t or

more, then it is likely that the phase deviations of the chips will constitute a very

random set, especially in view of the time-scrambling nature of the random

hopcode. However, for E_(t) to deviate over a span of fo-I in tim, T, its derivative
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y(t) would be of the order of fo /T within the interval T, i.e., yM ---(foT)-.]

It is interesting to note that the condition y( -_(foT)- may also be

expressed as

T(--) [X4 2.3 x(I, ýX[650..mls ,(8.31)

which, except for the factor 2.3, is the same as the defining equation for Tmax,
the maximum flutter-safe interval for linear FM transmissions (see Eq. (8.22)
and subsequent iext4. Since y(T) depends so weakly upon T, it follows that the
solution of Eq. (8.31) is about 2 .3 Tmax. The conclusion is that Tmax is just as
important a parameter for the random hopcode as it was for the linear FM case.
In the linear FM case the flutter begins to have a significant pulse elongation
effect when T reaches the critical value Tmax, whereas, in the random hopcode
case the flutter will have have seriously diminished the energy of the narrow
pulse (without elongating it) by the time T reaches 2.3Tma.

The second informal result is based upon the observation that the
amplitude of the narrow pulse in the random hopcode case is roughly the same
as the amplitude of the elongated pulse in the stepped-FM case; i.e., the power
of the fluttered and compressed pulse is the same in those two cases, even
though the energy may be quite different. This observation is mainly empirical,
based upon computer simulations, but some heuristic theoretical explanations
have been offered (Brudner et aL, 1990). Thus, although the power is the
same in the two cases, for the hopcode case the narrow pulse's duration
remains fixed as its energy diminishes whereas, in the stepped-FM case, the
pulse energy remains fixed as its duration increases in accordance with
Eq. (8.15). Since energy is the product of power and duration, it follows that
the energy lost in the narrow pulse due to flutter is in inverse proportion to the
formula of Eq. (8.15). Thus, in dB, the energy loss of the narrow pulse is

energy IOSSdB =_101glo[ +(Tfo)( 6 50 m/s) 1 (8.32)

for the random hopcode case. It should be remembered that this energy is not
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truly lost, since it is merely transferred from the narrow pulse to the central

diamond.

Interestingly, if one replaces T by T/N in Eq. (8.32), the formula gives the

same result as Eq. (6.84); i.e., it computes the energy lost from the central

diamond to the fat diamond. However, significant loss of pulse energy to the fat

diamond is not likely (as has already been stated), because of the smaitness of

the flutter amplitude y lN) over the relatively brief chip interval TIN.

It is also interesting to try the T-value given by Eq. (8.31), which,

according to our first informal result, is supposed to cause "substantial" energy

to be lost from the narrow pulse. When that T-value is substituted into

Eq. (8.32), the resulting energy loss is 5.2 dB, representing a 70% reduction in

energy. Thus, our two informal results appear to be compatible.

8.9 PROCESSING GAIN FOR A RANDOM HOPCODE

For the case of a random hopcode transmission, the preceding section

made it clear that flutter does not elongate the compressed pulse in a gradual

way. Consequently, it makes no sense to compensate for the flutter

environment by adjusting the detector's integration window gradually. Instead,

one should set the window length, Tdet, to a fixed width that matches either the

central diamond or the narrow pulse.

If one matches the integration window to the narrow pulse, Tdet = 1.5/Af,

then the processing gain is computed by subtracting the energy loss term of

Eq. (8.32) from 5 loglo(T/Tdet), giving the result

Proc. Gain = 5 log 10(AfT) - 0.88dB

- lOlogi o0 + (Tfo)(65msj (8.33)
650 m/s ý

This formula shows the good and bad points of matching the integration

window to the narrow pulse. The first term guarantees an optimum processing
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gain in the absence of flutter. The last term applies the biggest flutter penalty

tha. has been encountered in this report.

Admittedly, the penalty will not amount to very much until a threshold is

reached, i.e., until the second term in the square brackets becomes significant.

The penalty will not exceed 3 dB until T> Tmax, where Tmax is the maximum

flutter-safe interval that was defined in Section 8.6 (i.e., it is the value of T that

satisfies Eq. (8.22)). But beyond that point the processing gain will lose about

10 dB for each decade of increase in flutter amplitude, center frequency, or

transmitted pulse duration.

The more "robust" choice is to match the window to the effective duration

of the central diamond; i.e., Tde = 1.1 IT/N. (One might prefer to use its full

duration, Tdt = 27/N, but that is a minor detail.) Unless the flutter is of such

extraordinarily high amplitude that it drains the energy into the tat diamond, this

chip-sized window will capture virtually all of the pulse energy. The processing

gain will be 5 logjo(T/Tdet), where Tdet = 1.11 T/N. After simplification, using

the fact that N = A-fT, one gets the following result:

Proc. Gain = 2.5 log o(AfT) - 0.2dB. (8.34)

(Another minor detail: This equation, which duplicates Eq. (6.77), would need a

correction of -1.8 dB to account for a 33% energy loss that was predicted by the

theory of Section 6. The need for such a correction is not certain, however. The

discrepancy may be due to approximations that were made in the theory.)

There is no flutter penalty, but this longer integration window provides

only half of the feasible gain in environments where the flutter is below

threshold. The robustness has been bought with a sizable sacrifice.

rNOTE: It has been mentioned in Section 6.8 that when random hopcode

transmissions are used in radar. communications, and sonar applications 0 is
sometimes wise to abandon the idea of compressing the pulse to less than a

chip's duration, for a variety of reasons. Noncoherent detection of the individual

frequency components then becomes a possibility, going under the name of
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"post-detection pulse compression." That kind of system architecture, using

hopcodes as we have defined them, would force the 2:1 gain sacrifice at the

outset.]

8.10 GROUND NOT COVERED

It seems appropriate to mention several relevant topics that, for a variety

of reasons, have not been pursued adequately.

Looking beyond processing gain: Throughout this report, attention has

been focused upon the pulse compression fiiter's processing gain. Specifically,

it has been defined as the filter's insertion gain, measured with a fixed set of

specifications for probability of detection and false alarm rate (not false alarm

probability!). Moreover, the definition has assumed a sonar echo from an ideal,

point target. However, there are many sonar application scenarios in which this

performance measure is not the whole story, and there are some applications

for which it is entirely irrelevant. The reader is warned to consider this point

carefully, and to supply the appropriate adjustments and modifications.

Doppler-spreading and time-spreading: Much has been published on

Doppler-spread and time-spread channels (and targets) in the communications,

radar, and sonar literature. Some of the results bear a resemblance to our

flutter results. Certainly, flutter produces Doppler spreading of a sort. However,

flutter does not create a set of parallel, additive channels that contribute

simultaneous components of different Doppler. Such behavior is characteristic

of many radar and sonar applications, but not of flutter as we have defined it.

Nevertheless, connections between the two theories would be worth pursuing.

Target motions, including aspect rotation: Target motions, as a source

of flutter, have been given scant attention. Simple vibration or meandering of

the target is probably little different from vibration or meandering of the sonar
platform. On the other hand, target rotational motions can bring scattering

centers into viaw and eclipse other scattering centers. The effect may be flutter-

like, but it might be more appropriate to regard it as a combination of time-

spreading and Doppler spreading. Even a stationary target will appear to be
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rotating when viewed by a sidescan sonar that is moving at a significant speed,

especially if long duration waveforms are being transmitted.

Other hopcode waveforms: Our definition of a hopcode burst is mathe-

matically neat and simple. It gives an efficiently packed spectrum without gaps.

Each chip frequency is visited exactly once during the transmission period.

Some of the results will have to be altered if one wants to use another type of

hopcode transmission with time gaps, frequency gaps, or other alterations.

(However, the fact that we require the time-bandwidth product to be a perfect

square of an odd integer is not nearly as restrictive as it sounds.)

Noise-like waveforms: Bandlimited noise bursts have also been studied

by the author and his colleagues. Bartels (1989), in his earlier computer

simulation studies with bandlimited noise bursts, found flutter effects that were

similar to those described here for the random hopcode case, with one

exception: The narrow pulse's energy drained directly into the fat diamond,

without pausing in the central diamond. This is not too surprising, since there

were no chips with which to construct a central diamond. Some subsequent

theoretical work has been done on this subject (Brudner et al., 1990), and
some unpublished computer simulations have been done, but the results were
not complete enough for inclusion in this report.

Limits on time-bandwidth product: For a fixed bandwidth system, a very

large time-bandwidth product can be attained only by using a waveform of very

long duration. For a monostatic active sonar this restricts the inner range limit,

due to acoustic (and possibly electronic) feedover from the transmitter to the

receiver, and volume backscatter from the region directly in front of the sonar

array, unless it is possible to filter out those sources of interference. As far as
we know, the only type of waveform that permits the required rejection filter

performance (often >100 dB) is the FM wavform, or some modest modification

thereof. Success has been achieved with continuous transmission frequency
modulation (CTFM) sonars, but apparently not with any other CTxx type of

sonar. Thus, if sonar operation is desired at close range, there may be a
significant limit upon the waveform duration and attendant processing gain that

can be attained even in the absence of flutter.
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8.11 GENERAL CONCLUSIONS

In this report, flutter has been defined, scrutinized, characterized,
quantified, and parametrized. The effect of flutter upon replica-correlation

processing has been examined in detail. Only time-axis perturbations, not

amplitude fluctuations, have been considered. The focus of attention has been
upon high resolution sonar, using transmissions with very large time-bandwidth

products. It has also been assumed that the transmissions had flat spectra

within their bandwidths and constant amplitudes within their durations. Two

types of waveforms hiave been considered in detail: linear FM waveforms and

random frequency-hopped waveforms.

In both cases it has been found that there is a threshold, below which the
flutter has little or no effect. A product of three factors determines whether the

threshold is exceeded: transmitted duration, transmission center frequency, and
the amplitude of the physical flutter process (appropriately measured).
Transmission bandwidth is not one of the factors. Once the threshold is

exceeded, the degree of effect depends upon the waveform type, the detector

parameters, and the transmission bandwidth.

The studies showed that, for a linear FM waveform, the flutter merely

elongates the pulse at the output of the pulse compression filter, without

diminishing its energy. When a frequency-hopped waveform with a random
hopcode frequency sequence was studied, it was found that it has a rather

different behavior. As the flutter grows from zero, the compressed pulse
remains narrow but diminishes in amplitude, with the missing energy
reappearing as "grass" that sprouts up in a triangular pattern, covering an

interval that is twice as long as the chip interval. Eventually the central pulse

disappears.

It is not as easy to describe the quantitative effects of flutter upon these

two waveform types. Simply put, the linear FM transmission seems to be more
forgiving of flutter effects; the processing gain merely tops out at whatever value
it had when the threshold was exceeded. On the other hand, for the hopcode
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burst the processing gain diminishes rapidly after the threshold is crossed-but

not if one is willing to make a 2:1 sacrifice in processing gain in order to achieve
"robust" performance. These descriptions inevitably oversimplify the results,

however. The reader is referred to the appropriate sections of the report for a

better summary.

The results of the theoretical developments, as well as the computer

simulation examples, were not in conflict with the more heuristic results that had

been reported previously (Brudner et al., 1990) and with the computer

simulations that had been done by Bartels (1989) in his thesis. (The latter work,

done under the supervision of the author, was the original stimulus for many of

the theoretical derivations in this report.)

Experimental data on the characteristics of environmental flutter were

found to be sadly deficient. Data that were available, from studies of

propagational instabilities in the water, had to be extrapolated to be of any use

at all. New ways were suggested for performing such studies in the future.

There were no real data available from which to quantify the flutter caused by
platform motion; nevertheless, it was guessed that it probably has a more

significant effect than flutter induced by propagational instabilities in the

medium.
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